corrosive wear
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 54)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
pp. 199-209
Author(s):  
Titus Thankachan ◽  
V. Kavimani ◽  
P. M. Gopal
Keyword(s):  

2022 ◽  
Vol 576 ◽  
pp. 121231
Author(s):  
Bozhuan Lin ◽  
Kaihuai Yang ◽  
Xiaogang Bao ◽  
Jialiang Liu ◽  
Qiaohang Guo ◽  
...  

Author(s):  
Xiaoqiang Fan ◽  
Han Yan ◽  
Meng Cai ◽  
Shijie Song ◽  
Yu Huang ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Andreas Teigland ◽  
Sigbjørn Sangesland ◽  
Stein Dale ◽  
Bjørn Brechan

Summary Casing wear is the process of progressive loss of wall thickness owing to relative motion between the drillstring and casing. The amount of casing wear depends on conditions, such as the downhole forces, the accumulated time of contact between drillstring and casing, and the materials used. This process is complex and involves abrasive, adhesive, and corrosive wear mechanisms that are difficult to predict. To deal with the complexity of the conditions, a simple but effective wear model is used in the industry to estimate tubular wear in drilling and intervention operations. The model is based on abrasive and adhesive wear, and the effects of corrosion are not considered. In addition, an empirical part of the model known as the correction factor is based exclusively on experimental carbon-steel test data. Tubulars made of corrosion-resistant alloys (CRAs) are known to exhibit abnormal wear characteristics. A series of experiments has been designed and performed to investigate the wear characteristics of CRAs. These experiments resulted in excessive wear factors for the CRA casing samples, demonstrating their susceptibility to wear. This study finds that omitting the correction factor from the calculation procedure can greatly improve wear estimates for some CRAs. Removing the correction factor results in a linear wear-work relationship that reflects the actual wear trends from test results. However, further studies are needed to confirm correction factors and more accurate wear calculation procedures for CRA tubulars in general.


Author(s):  
Serhiy Bilyk ◽  
Artem Bilyk ◽  
Eugen Tsyupyn ◽  
Oleksandr Glitin

The article developed an improved physical and mathematical model of the corrosive wear of zinc coating of steel structures in a city. The research is based on full-scale experimental data for determining the wear of a zinc coating of full-scale metal spatial structures of frame road structures for informational safety systems on roads after 10 years of operation in the conditions of Kyiv. The frame structure consists of metal columns and a steel crossbar frame. The crossbar frame is a spatial block of two steel trusses. The block of trusses is assembled from unified spatial sections united by vertical and horizontal ties, and which are connected by flange nodes of a special design. All structural elements are made of rolled tubes. Based on the research results, an approach to assessing the physical wear of the zinc coating of the spatial structural system is proposed. According to the peculiarities of the arrangement of elements in frame structures, and, accordingly, to different conditions and operations, an approach is proposed to assess the corrosive wear of a zinc coating for various groups of elements: columns, spatial block of two steel trusses, flange nodes. The physical and mathematical model is based on the working hypothesis of uneven wear of the zinc coating over time. It was found that for each group of structural elements, the conditions of the gaseous environment, the effects of atmospheric precipitation, wind speed, temperature changes individually affect the reduction of the zinc coating. The obtained experimental data were used to determine the parameter of the rate of decrease in the zinc coating of the physical and mathematical model. The results of the research and the development of the methodology helped to establish the operating conditions of the zinc coating according to the criterion of the rate of wear of the zinc coating, to classify the category of aggressiveness of the environment for each group of structural elements. Also, studies allow predicting the service life by reducing the thickness of the zinc coating, as well as the wear of the zinc coating in time in the subsequent period of operation. The methodology is universal and can be extended to other types of galvanized metal structures.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1457
Author(s):  
Mian Wu ◽  
Lin Pan ◽  
Haitao Duan ◽  
Changxin Wan ◽  
Tian Yang ◽  
...  

The hydraulic support column bears loading and makes reciprocating motion ceaselessly for extended periods, so its service life is far shorter than that of the overall hydraulic support. This paper offers a comparative study on the surface coating of hydraulic support columns with hard chrome plating and high-velocity oxygen fuel (HVOF) thermal spraying refabricating to analyze the impact of different refabricating processes on the microstructure, hardness, corrosion resistance, and wear resistance of the coating (plating). The result shows that the structure of the HVOF coating is uniformly compact, and the HVOF WC10Co4Cr coating has better wear resistance, more than four times that of hard chrome plating. In the neutral salt spray test, the HVOF Ni60 coating shows rustiness at 720 h of the test, which suggests its corrosion resistance is nearly five times that of hard chrome plating. Hence, under the harsh corrosive wear environment, the refabricating HVOF Ni60 is a more suitable replacement for the hydraulic support column coating than the hard chrome plating. Thus, the HVOF Ni60 coating could be an effective replacement for hard chrome plating.


2021 ◽  
Vol 4 (7(112)) ◽  
pp. 50-59
Author(s):  
Leontii Korostylov ◽  
Dmytro Lytvynenko ◽  
Hryhorii Sharun ◽  
Ihor Davydov

The structure of the hull of the project 1288 trawler in a region of fore hold was improved to ensure fatigue strength of assemblies of the intersection of main frames with the second bottom. To this end, a study of the fatigue strength of these assemblies was carried out for the original side structure and two versions of its modernization. Values of internal forces at the points of appearance of fatigue cracks in the compartment have been determined for three design versions of the side. It was found that the greatest forces act in the middle of the fore half of the compartment. Calculations of parameters of the long-term distribution of magnitudes of ranges of total equivalent operating stresses according to the Weibull law in the points of occurrence of fatigue cracks for different design versions of the side grillage have been performed. These parameters were determined for the middle of the fore hold of the vessel and for the areas in which maximum values of bending moment ranges are in effect with and without corrosive wear. Values of total fatigue damage and durability of the studied assemblies were determined. Calculations were carried out by nominal stress method, hot spot stress method, and experimental and theoretical method. It was shown that in order to ensure fatigue strength of the assembly under consideration, it is necessary to extend the intermediate frames of the original version of the side structure to the level of the second bottom fixing them to the deck. It is also necessary to attach a cargo platform to the side thus reducing the frame span. As a result, the level of fatigue damage over 25 years of operation will decrease by about 3.5 times. As it was found, approximate consideration of the slamming effect does not significantly increase the amount of fatigue damage to the assembly. The results of the development of recommendations for modernization of the side structure can be implemented both on ships of the 1288 project and on other ships with a transverse side framing system.


Sign in / Sign up

Export Citation Format

Share Document