panax notoginseng
Recently Published Documents


TOTAL DOCUMENTS

1077
(FIVE YEARS 420)

H-INDEX

51
(FIVE YEARS 8)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Feng Pan ◽  
Yue-jin Li ◽  
Ying Lu

Abstract Background P-glycoprotein (P-gp)-mediated steroid resistance (SR) has been suggested to play a significant role in lupus nephritis (LN) treatment failure. Panax notoginseng saponins (PNS), the main effective components of the traditional Chinese medicine notoginseng, exhibited potent reversal capability of P-gp-mediated SR, but its mechanism remains unknown. This study aimed to investigate the effect of PNS on reversing SR in lupus and its underlying mechanism in vivo and in vitro. Methods In this study, an SR animal and splenic lymphocyte model were established using low-dose methylprednisolone (MP). Flow cytometry was used to detect the effect of PNS on reversing P-gp-mediated SR and the expression of P-gp in different T-cells phenotypes. Serum levels of ANA and dsDNA in lupus mice were measured by ELISA. Apoptosis was identified by Annexin V-FITC/PI staining. RT–PCR and Western blotting were used to detect the protein and mRNA expression levels of SIRT1, FoxO1, and MDR1 in SR splenic lymphocytes from lupus mice (SLCs/MPs). Results PNS could reverse the SR in lupus mice. Simultaneously, PNS increased the apoptotic effect of MP on SLCs/MP cells. The increased accumulation of rhodamine-123 (Rh-123) indicated that intracellular steroid accumulation could be increased by the action of PNS. Moreover, PNS decreased the expression of P-gp levels. Further experiments elucidated that the SIRT1/FoxO1/MDR1 signalling pathway existed in SLCs/MP cells, and PNS suppressed its expression level to reverse SR. The expression of P-gp in Th17 from SLCs/MP cells was increased, while PNS could reduce its level in a more obvious trend. Conclusion The present study suggested that PNS reversed P-gp-mediated SR via the SIRT1/FoxO1/MDR1 signalling pathway, which might become a valuable drug for the treatment of SR in lupus. Th17 might be the main effector cell of PNS reversing SR.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Didi Ma ◽  
Jue Wang ◽  
Guo Yin ◽  
Lijun Wang ◽  
Yibao Jin ◽  
...  

Panax notoginseng (PN) is one of the most valuable traditional Chinese medicines and has extensive pharmacological effects. Recent studies demonstrated that PN exhibited pharmacological effect related to Alzheimer’s disease (AD). However, whether steaming process can boost its anti-AD activity is still unexplored. To fill this gap, effects of steaming durations and temperatures on the chemical characterization, neuroprotective and antioxidant activities of PN were systematically investigated in this study. HPLC fingerprint coupled with quantitative analysis demonstrated striking conversion of original saponins to less polar ones with the increase in the steaming time and temperature. In the viewpoint of anti-AD activity on neuroprotective and antioxidant effects, several steamed PN samples (110°C-6/8/10 h, 120°C ‐4/6 h samples) displayed a significant increase both in cell viability and oxygen radical absorption capacity (ORAC) values compared with the no steamed one ( P < 0.01 or P < 0.005 ). Steaming temperature had the greater impact on the change of chemical composition and anti-AD activity of PN. Moreover, the spectrum-effect relationship analysis revealed that the transformed saponins were partially responsible for the increased neuroprotective and antioxidant effects of steamed PN. Therefore, steamed PN could be used as a potential crude drug for prevention and treatment of AD.


2022 ◽  
Vol 12 ◽  
Author(s):  
Panpan Wang ◽  
Lifang Yang ◽  
Jialing Sun ◽  
Ye Yang ◽  
Yuan Qu ◽  
...  

Panax notoginseng (Burk.) F. H. Chen is a Chinese medicinal plant of the Araliaceae family used for the treatment of cardiovascular and cerebrovascular diseases in Asia. P. notoginseng is vulnerable to root rot disease, which reduces the yield of P. notoginseng. In this study, we analyzed the rhizosphere soil and root endophyte microbial communities of P. notoginseng from different geographical locations using high-throughput sequencing. Our results revealed that the P. notoginseng rhizosphere soil microbial community was more diverse than the root endophyte community. Rhodopseudomonas, Actinoplanes, Burkholderia, and Variovorax paradoxus can help P. notoginseng resist the invasion of root rot disease. Ilyonectria mors-panacis, Pseudomonas fluorescens, and Pseudopyrenochaeta lycopersici are pathogenic bacteria of P. notoginseng. The upregulation of amino acid transport and metabolism in the soil would help to resist pathogens and improve the resistance of P. notoginseng. The ABC transporter and gene modulating resistance genes can improve the disease resistance of P. notoginseng, and the increase in the number of GTs (glycosyltransferases) and GHs (glycoside hydrolases) families may be a molecular manifestation of P. notoginseng root rot. In addition, the complete genomes of two Flavobacteriaceae species and one Bacteroides species were obtained. This study demonstrated the microbial and functional diversity in the rhizosphere and root microbial community of P. notoginseng and provided useful information for a better understanding of the microbial community in P. notoginseng root rot. Our results provide insights into the molecular mechanism underlying P. notoginseng root rot and other plant rhizosphere microbial communities.


2022 ◽  
Author(s):  
Huiling Wang ◽  
Kuan Yang ◽  
Liwei Guo ◽  
Lifen Luo ◽  
Chi He ◽  
...  

Abstract Sanqi round spot, which is caused by Mycocentrospora acerina, is a destructive disease limits the production of Panax notoginseng in Yunnan province of China. However, the disease has not been studied comprehensively. In the current study, we identify M. acerina polymorphic microsatellite markers using CERVUS 3.0 and compare the genetic diversity of its isolates from P. notoginseng round spot using Simple Sequence Repeat (SSR) markers and polyacrylamide gel electrophoresis. Thirty-two SSR markers with good polymorphism were developed using MISA and CERVUS 3.0. The genetic diversity of 187 M. acerina isolates were evaluated using 14 representative SSR primers, and the polymorphic information content values of 14 sites ranged from 0.813 to 0.946, with a total of 264 alleles detected at 14 microsatellite loci. The average expected heterozygosity was 0.8967. The genetic diversity of M. acerina in Yunnan province does not reflect geographic specificity.


2022 ◽  
Vol 175 ◽  
pp. 114228
Author(s):  
Qingyan Tang ◽  
Yingchun Lu ◽  
Guanghui Zhang ◽  
Junrong Tang ◽  
Zijiang Yang ◽  
...  

2022 ◽  
pp. 114941
Author(s):  
Min Gao ◽  
Zejun Zhang ◽  
Yiming Zhang ◽  
Minghui Li ◽  
Xiaoyan Che ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document