premature termination codon
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 94)

H-INDEX

29
(FIVE YEARS 5)

2022 ◽  
Vol 119 (3) ◽  
pp. e2114858118
Author(s):  
Young Jin Kim ◽  
Nicole Sivetz ◽  
Jessica Layne ◽  
Dillon M. Voss ◽  
Lucia Yang ◽  
...  

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), and the CFTR-W1282X nonsense mutation causes a severe form of CF. Although Trikafta and other CFTR-modulation therapies benefit most CF patients, targeted therapy for patients with the W1282X mutation is lacking. The CFTR-W1282X protein has residual activity but is expressed at a very low level due to nonsense-mediated messenger RNA (mRNA) decay (NMD). NMD-suppression therapy and read-through therapy are actively being researched for CFTR nonsense mutants. NMD suppression could increase the mutant CFTR mRNA, and read-through therapies may increase the levels of full-length CFTR protein. However, these approaches have limitations and potential side effects: because the NMD machinery also regulates the expression of many normal mRNAs, broad inhibition of the pathway is not desirable, and read-through drugs are inefficient partly because the mutant mRNA template is subject to NMD. To bypass these issues, we pursued an exon-skipping antisense oligonucleotide (ASO) strategy to achieve gene-specific NMD evasion. A cocktail of two splice-site–targeting ASOs induced the expression of CFTR mRNA without the premature-termination-codon–containing exon 23 (CFTR-Δex23), which is an in-frame exon. Treatment of human bronchial epithelial cells with this cocktail of ASOs that target the splice sites flanking exon 23 results in efficient skipping of exon 23 and an increase in CFTR-Δex23 protein. The splice-switching ASO cocktail increases the CFTR-mediated chloride current in human bronchial epithelial cells. Our results set the stage for developing an allele-specific therapy for CF caused by the W1282X mutation.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 141
Author(s):  
Fabrice Lejeune

Nonsense-mediated mRNA decay (NMD) is both a mechanism for rapidly eliminating mRNAs carrying a premature termination codon and a pathway that regulates many genes. This implies that NMD must be subject to regulation in order to allow, under certain physiological conditions, the expression of genes that are normally repressed by NMD. Therapeutically, it might be interesting to express certain NMD-repressed genes or to allow the synthesis of functional truncated proteins. Developing such approaches will require a good understanding of NMD regulation. This review describes the different levels of this regulation in human cells.


2022 ◽  
Vol 23 (2) ◽  
pp. 656
Author(s):  
Marta Vallverdú-Prats ◽  
Ramon Brugada ◽  
Mireia Alcalde

Arrhythmogenic cardiomyopathy is a heritable heart disease associated with desmosomal mutations, especially premature termination codon (PTC) variants. It is known that PTC triggers the nonsense-mediated decay (NMD) mechanism. It is also accepted that PTC in the last exon escapes NMD; however, the mechanisms involving NMD escaping in 5′-PTC, such as reinitiation of translation, are less known. The main objective of the present study is to evaluate the likelihood that desmosomal genes carrying 5′-PTC will trigger reinitiation. HL1 cell lines were edited by CRISPR/Cas9 to generate isogenic clones carrying 5′-PTC for each of the five desmosomal genes. The genomic context of the ATG in-frame in the 5′ region of desmosomal genes was evaluated by in silico predictions. The expression levels of the edited genes were assessed by Western blot and real-time PCR. Our results indicate that the 5′-PTC in PKP2, DSG2 and DSC2 acts as a null allele with no expression, whereas in the DSP and JUP gene, N-truncated protein is expressed. In concordance with this, the genomic context of the 5′-region of DSP and JUP presents an ATG in-frame with an optimal context for the reinitiation of translation. Thus, 5′-PTC triggers NMD in the PKP2, DSG2* and DSC2 genes, whereas it may escape NMD through the reinitiation of the translation in DSP and JUP genes, with no major effects on ACM-related gene expression.


2022 ◽  
pp. 101546
Author(s):  
Alireza Baradaran-Heravi ◽  
Claudia C. Bauer ◽  
Isabelle B. Pickles ◽  
Sara Hosseini-Farahabadi ◽  
Aruna D. Balgi ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
Woosuk Steve Hur ◽  
David S. Paul ◽  
Emma G Bouck ◽  
Oscar Negron ◽  
Jean Marie N Mwiza ◽  
...  

Genetic variants within the fibrinogen Aa-chain encoding the aC-region commonly result in hypodysfibrinogenemia in patients. However, the (patho)physiological consequences and underlying mechanisms of such mutations remain undefined. Here, we generated Fga270 mice carrying a premature termination codon within the Fga gene at residue 271. The Fga270 mutation was compatible with Mendelian inheritance for offspring of heterozygous crosses. Adult Fga270/270 mice were hypofibrinogenemic with ~10% plasma fibrinogen levels relative to FgaWT/WTmice, linked to 90% reduction in hepatic Fga mRNA due to nonsense-mediated decay of the mutant mRNA. Fga270/270 mice had preserved hemostatic potential in vitro and in vivo in models of tail bleeding and laser-induced saphenous vein injury, while Fga-/- mice had continuous bleeding. Platelets from FgaWT/WTandFga270/270 mice displayed comparable initial aggregation following ADP stimulation, but Fga270/270 platelets quickly disaggregated. Despite ~10% plasma fibrinogen, the fibrinogen level in Fga270/270 platelets was ~30% of FgaWT/WT platelets with a compensatory increase in fibronectin. Notably, Fga270/270 mice showed complete protection from thrombosis in the inferior vena cava stasis model. In a model of Staphylococcus aureus peritonitis, Fga270/270 mice supported local, fibrinogen-mediated bacterial clearance and host survival comparable to FgaWT/WT, unlike Fga-/- mice. Decreasing the normal fibrinogen levels to ~10% with siRNA in mice also provided significant protection from venous thrombosis without compromising hemostatic potential and antimicrobial function. These findings both reveal novel molecular mechanisms underpinning fibrinogen aC-region truncation mutations and highlight the concept that selective fibrinogen reduction may be efficacious for limiting thrombosis while preserving hemostatic and immune protective functions.


2021 ◽  
Author(s):  
Maria E Bernabeu-Herrero ◽  
Dilip Patel ◽  
Adrianna Bielowka ◽  
Sindu Srikaran ◽  
Patricia Chaves Guerrero ◽  
...  

ABSTRACTIn order to identify cellular phenotypes resulting from nonsense (gain of stop/premature termination codon) variants, we devised a framework of analytic methods that minimised confounder contributions, and applied to blood outgrowth endothelial cells (BOECs) derived from controls and patients with heterozygous nonsense variants in ACVRL1, ENG or SMAD4 causing hereditary haemorrhagic telangiectasia (HHT). Following validation of 48 pre-selected genes by single cell qRT-PCR, discovery RNASeq ranked HHT-differential alignments of 16,807 Ensembl transcripts. Consistent gene ontology (GO) processes enriched compared to randomly-selected gene lists included bone morphogenetic protein, transforming growth factor-β and angiogenesis GO processes already implicated in HHT, further validating methodologies. Additional terms/genes including for endoplasmic reticulum stress could be attributed to a generic process of inefficient nonsense mediated decay (NMD). NMD efficiency ranged from 78-92% (mean 87%) in different BOEC cultures, with misprocessed mutant protein production confirmed by pulse chase experiments. Genes in HHT-specific and generic nonsense decay (ND) lists displayed differing expression profiles in normal endothelial cells exposed to an additional stress of exogenous 10μmol/L iron which acutely upregulates multiple mRNAs: Despite differing donors and endothelial cell types, >50% of iron-induced variability could be explained by the magnitude of transcript downregulation in HHT BOECs with less efficient NMD. The Genotype Tissue Expression (GTEx) Project indicated ND list genes were usually most highly expressed in non-endothelial tissues. However, across 5 major tissues, although 18/486 nonsense and frameshift variants in highly expressed genes were captured in GTEx, none were sufficiently prevalent to obtain genome-wide significant p values for expression quantitative trait loci (GnomAD allele frequencies <0.0005). In conclusion, RNASeq analytics of rare genotype-selected, patient-derived endothelial cells facilitated identification of natural disease-specific and more generic transcriptional signatures. Future studies should evaluate wider relevance and whether injury from external agents is augmented in cells with already high burdens of defective protein production.


2021 ◽  
Author(s):  
Robin Ganesan ◽  
Kotchaphorn Mangkalaphiban ◽  
Richard E. Baker ◽  
Feng He ◽  
Allan Jacobson

SUMMARYUpf1, Upf2, and Upf3 are the central regulators of nonsense-mediated mRNA decay (NMD), the eukaryotic mRNA quality control pathway generally triggered when a premature termination codon is recognized by the ribosome. The NMD-related functions of the Upf proteins likely commence while these factors are ribosome-associated, but little is known of the timing of their ribosome binding, their specificity for ribosomes translating NMD substrates, or the nature and role of any ribosome:Upf complexes. Here, we have elucidated details of the ribosome-associated steps of NMD. By combining yeast genetics with selective ribosome profiling and co-sedimentation analyses of polysomes with wild-type and mutant Upf proteins, our approaches have identified distinct states of ribosome:Upf association. All three Upf factors manifest progressive polysome association as mRNA translation proceeds, but these events appear to be preceded by formation of a Upf1:80S complex as mRNAs initiate translation. This complex is likely executing an early mRNA surveillance function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anuradha Bhattacharyya ◽  
Christopher R. Trotta ◽  
Jana Narasimhan ◽  
Kari J. Wiedinger ◽  
Wencheng Li ◽  
...  

AbstractHuntington’s disease (HD) is a hereditary neurodegenerative disorder caused by expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the huntingtin (HTT) gene. Consequently, the mutant protein is ubiquitously expressed and drives pathogenesis of HD through a toxic gain-of-function mechanism. Animal models of HD have demonstrated that reducing huntingtin (HTT) protein levels alleviates motor and neuropathological abnormalities. Investigational drugs aim to reduce HTT levels by repressing HTT transcription, stability or translation. These drugs require invasive procedures to reach the central nervous system (CNS) and do not achieve broad CNS distribution. Here, we describe the identification of orally bioavailable small molecules with broad distribution throughout the CNS, which lower HTT expression consistently throughout the CNS and periphery through selective modulation of pre-messenger RNA splicing. These compounds act by promoting the inclusion of a pseudoexon containing a premature termination codon (stop-codon psiExon), leading to HTT mRNA degradation and reduction of HTT levels.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Evelina Siavrienė ◽  
Gunda Petraitytė ◽  
Birutė Burnytė ◽  
Aušra Morkūnienė ◽  
Violeta Mikštienė ◽  
...  

Abstract Background Autosomal recessive limb–girdle muscular dystrophy-1 (LGMDR1), also known as calpainopathy, is a genetically heterogeneous disorder characterised by progression of muscle weakness. Homozygous or compound heterozygous variants in the CAPN3 gene are known genetic causes of this condition. The aim of this study was to confirm the molecular consequences of the CAPN3 variant NG_008660.1(NM_000070.3):c.1746-20C > G of an individual with suspected LGMDR1 by extensive complementary DNA (cDNA) analysis. Case presentation In the present study, we report on a male with proximal muscular weakness in his lower limbs. Compound heterozygous NM_000070.3:c.598_612del and NG_008660.1(NM_000070.3):c.1746-20C > G genotype was detected on the CAPN3 gene by targeted next-generation sequencing (NGS). To confirm the pathogenicity of the variant c.1746-20C > G, we conducted genetic analysis based on Sanger sequencing of the proband’s cDNA sample. The results revealed that this splicing variant disrupts the original 3′ splice site on intron 13, thus leading to the skipping of the DNA fragment involving exon 14 and possibly exon 15. However, the lack of exon 15 in the CAPN3 isoforms present in a blood sample was explained by cell-specific alternative splicing rather than an aberrant splicing mechanism. In silico the c.1746-20C > G splicing variant consequently resulted in frameshift and formation of a premature termination codon (NP_000061.1:p.(Glu582Aspfs*62)). Conclusions Based on the results of our study and the literature we reviewed, both c.598_612del and c.1746-20C > G variants are pathogenic and together cause LGMDR1. Therefore, extensive mRNA and/or cDNA analysis of splicing variants is critical to understand the pathogenesis of the disease.


2021 ◽  
Author(s):  
Maya Hiltpold ◽  
Fredi Janett ◽  
Xena Marie Mapel ◽  
Naveen Kumar Kadri ◽  
Zih-Hua Fang ◽  
...  

Background: Semen quality and male fertility are monitored in artificial insemination bulls to ensure high insemination success rates. Only ejaculates that fulfill minimum quality requirements are processed and eventually used for artificial inseminations. We examined 70,990 ejaculates from 1343 Brown Swiss bulls to identify bulls from which all ejaculates were rejected due to low semen quality. This procedure identified a bull that produced twelve ejaculates with an aberrantly low number of sperm (0.2±0.2 x 109 sperm per ml) which were mostly immotile due to multiple morphological abnormalities. Results: The genome of the bull was sequenced at 12-fold coverage to investigate a suspected genetic cause. Comparing the sequence variant genotypes of the bull with those from 397 fertile bulls revealed a 1-bp deletion in the coding sequence of QRICH2 encoding glutamine rich 2 as a compelling candidate causal variant. The 1-bp deletion causes a frameshift in translation and induces a premature termination codon (ENSBTAP00000018337.1:p.Cys1644AlafsTer52). The analysis of testis transcriptomes from 76 bulls showed that the transcript with the premature termination codon is subjected to nonsense-mediated mRNA decay. The 1-bp deletion resides on a 675 kb haplotype spanning 181 SNPs from the Illumina BovineHD Bead chip. The haplotype segregates at a frequency of 5% in the Brown Swiss cattle population. This analysis also identified another bull that carried the 1-bp deletion in the homozygous state. Semen analyses from the second bull confirmed low sperm concentration and immotile sperm with multiple morphological abnormalities primarily affecting the sperm flagellum and, to a lesser extent, the sperm head. Conclusions: A recessive loss-of-function allele of bovine QRICH2 likely causes low sperm concentration and immotile sperm with multiple morphological abnormalities. Routine sperm analyses unambiguously identify homozygous bulls. A direct gene test can be implemented to monitor the frequency of the undesired allele in cattle populations.


Sign in / Sign up

Export Citation Format

Share Document