high content analysis
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 60)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Sara Ahmed ◽  
Alyssa Manning ◽  
Lindsay Flint ◽  
Divya Awasthi ◽  
Yulia Ovechkina ◽  
...  

Mycobacterium tuberculosis is an important global pathogen for which new drugs are urgently required. The ability of the organism to survive and multiply within macrophages may contribute to the lengthy treatment regimen with multiple drugs that are required to cure the infection. We screened the MyriaScreen II diversity library of 10,000 compounds to identify novel inhibitors of M. tuberculosis growth within macrophage-like cells using high content analysis. Hits were selected which inhibited the intramacrophage growth of M. tuberculosis without significant cytotoxicity to infected macrophages. We selected and prioritized compound series based on their biological and physicochemical properties and the novelty of the chemotypes. We identified five chemical classes of interest and conducted limited catalog structure-activity relationship studies to determine their tractability. We tested activity against intracellular and extracellular M. tuberculosis, as well as cytoxicity against murine RAW264.7 and human HepG2 cells. Benzene amide ethers, thiophene carboxamides and thienopyridines were only active against intracellular bacteria, whereas the phenylthiourea series was also active against extracellular bacteria. One member of a phenyl pyrazole series was moderately active against extracellular bacteria. We identified the benzene amide ethers as an interesting series for further work. These new compound classes serve as starting points for the development of novel drugs to target intracellular M. tuberculosis.


2021 ◽  
Author(s):  
Sara Ahmed ◽  
Alyssa J Manning ◽  
Lindsay Flint ◽  
Divya Awasthi ◽  
Tanya Parish

Mycobacterium tuberculosis is an important global pathogen for which new drugs are urgently required. The ability of the organism to survive and multiply within macrophages may contribute to the lengthy treatment regimen with multiple drugs that are required to cure the infection. We screened the MyriaScreen II diversity library of 10,000 compounds to identify novel inhibitors of M. tuberculosis growth within macrophage-like cells using high content analysis. Hits were selected which inhibited the intramacrophage growth of M. tuberculosis without significant cytotoxicity to infected macrophages. We selected and prioritized compound series based on their biological and physicochemical properties and the novelty of the chemotypes. We identified five chemical classes of interest and conducted limited catalog structure-activity relationship studies to determine their tractability. We tested activity against intracellular and extracellular M.tuberculosis, as well as cytoxicity against murine RAW264.7 and human HepG2 cells. Benzene amide ethers, thiophene carboxamides and thienopyridines were only active against intracellular bacteria, whereas the phenylthiourea series was also active against extracellular bacteria. One member of a phenyl pyrazole series was moderately active against extracellular bacteria. We identified the benzene amide ethers as an interesting series for further work. These new compound classes serve as starting points for the development of novel drugs to target intracellular M. tuberculosis.


2021 ◽  
Author(s):  
Isabella A Lambert-Smith ◽  
Justin J Yerbury ◽  
Darren N Saunders

Disrupted proteome homeostasis (proteostasis) in amyotrophic lateral sclerosis (ALS) has been a major focus of research in the past two decades. Yet the exact processes that normally maintain proteostasis, but that are uniquely disturbed in motor neurons expressing diverse genetic mutations, remain to be established. Obtaining a better understanding of proteostasis disruption in association with different ALS-causing mutations will improve our understanding of ALS pathophysiology and may identify novel therapeutic targets and strategies for ALS patients. Here we describe the development and use of a novel high-content analysis (HCA) assay to investigate proteostasis disturbances caused by the expression of ALS-causing gene variants. This assay involves the use of conformationally-destabilised mutants of firefly luciferase (Fluc) to examine protein folding/re-folding capacity in NSC-34 cells expressing ALS-associated mutations in the genes encoding superoxide dismutase-1 (SOD1A4V) and cyclin F (CCNFS621G). We demonstrate that these Fluc isoforms can be used in high-throughput format to report on reductions in the activity of the chaperone network that result from the expression of SOD1A4V, providing multiplexed information at single-cell resolution. In addition to SOD1A4V and CCNFS621G, NSC-34 models of ALS-associated TDP-43, FUS, UBQLN2, OPTN, VCP and VAPB mutants were generated that could be screened using this assay in future work. For ALS-associated mutant proteins that do cause reductions in protein quality control capacity, such as SOD1A4V, this assay has potential to be applied in drug screening studies to identify candidate compounds that can ameliorate this deficiency.


2021 ◽  
Author(s):  
Bo Wang ◽  
Xuan Yao ◽  
Qiang Dong ◽  
Xiao-fang Wang ◽  
Hang Yin ◽  
...  

Abstract Background: Macropinocytosis serves as an internalization pathway for extracellular fluid, albumin and dissolved molecules. Assessing macropinocytosis has been challenging in the past because manual acquisition in combination with visual evaluation of images is laborious, making it difficult for high-throughput applications. So, there is a need to develop sensitive and specific methods. Methods: This paper proposed a quantitative and time-saving method for macropinocytosis detection based on high-content analysis (HCA). Meanwhile, cell proliferation was tested by means of CCK8. Results: The term “macropinosome index” was defined to estimate macropinocytosis and allow comparison between different cell lines and treatments. Furthermore, we demonstrated that macropinocytosis can promote Glioblastoma (GBM) cells survival in glutamine deficient conditions which resemble tumor microenvironment. Conclusions: HCA represents a novel, non-subjective and high-throughput assay for macropinocytosis assessment. Besides, Gln deprivation increased the macropinosome index in GBM cells, which points to the possible exploitation of this process in the design of GBM therapies.


2021 ◽  
Author(s):  
Jian Zhang ◽  
Vytaute Starkuviene ◽  
Holger Erfle ◽  
Zhaohui Wang ◽  
Manuel Gunkel ◽  
...  

Abstract In response to vascular injury vascular smooth muscle cells (VSMCs) alternate between a differentiated (contractile) and a dedifferentiated (synthetic) state or phenotype. Although parts of the signaling cascade regulating the phenotypic switch have been described, little is known on the role of miRNAs involved. To systematically address this issue, we have established a microscopy-based quantitative assay and identified 23 miRNAs that induced contractile phenotypes when over-expressed. These were then correlated to miRNAs identified from RNA-sequencing when comparing cells in the contractile and synthetic states. Using both approaches, six miRNAs (miR-132-3p, miR-138-5p, miR-141-3p, miR-145-5p, miR-150-5p, and miR-22-3p) were filtered as candidates that induce the phenotypic switch from synthetic to contractile. To identify potentially common regulatory mechanisms of these six miRNAs, their predicted targets were compared with five miRNAs sharing ZBTB20, ZNF704, and EIF4EBP2 as common potential targets and four miRNAs sharing 16 common potential targets. The interaction network consisting of these 19 targets and additional 18 hub targets were created to facilitate validation of miRNA-mRNA interactions by suggesting the most plausible pairs. Furthermore, the information on drug candidates was integrated into the network to predict novel combinatorial therapies that encompass the complexity of miRNAs-mediated regulation. This is the first study that combines phenotypic screening approach with RNA sequencing and bioinformatics to systematically identify miRNAs-mediated pathways and to identify potential drug candidates to positively influence the phenotypic switch of VSMCs.


Author(s):  
Mazia Amber ◽  
Yuling Xie ◽  
Hanne Friis Berntsen ◽  
Karin Elizabeth Zimmer ◽  
Erik Ropstad ◽  
...  

AbstractA total mixture of 29 persistent organic pollutants (POPs) modelled from Scandinavian blood concentrations was used to expose human A-498 kidney cells for 24 h over a concentration range spanning below to above blood level (1/10x, 1x, 50x, 100x, 500x). Its constituent submixtures (PFAA, Br, Cl) and co-mixtures (PFAA + Br, PFAA + Cl, Br + Cl) were also tested. Valinomycin (12 µM) was used as a cytotoxic comparative compound. Cell number (CN), nuclear area (NA), nuclear intensity (NI), mitochondrial membrane potential (MMP), and mitochondrial mass (MM) were assessed using high content analysis (HCA). Only the co-mixtures (PFAA + Cl, PFAA + Br) at 50x and 50x, 500x decreased CN, respectively. NI was increased by the total mixture at 500x and Cl mixture at all concentrations tested. MMP was increased by the total mixture at 100x and 500x, PFAA at 1x, Br + Cl and PFAA + Cl at 100x and 500x, respectively. MM was decreased by the total mixture at 500x. In contrast, valinomycin decreased CN and surviving cells showed a decrease in MMP and an increase in MM. In conclusion, POP exposure altered mitochondrial metabolism and induced cell death via an alternative mechanism to valinomycin. Only specific combinations of individual chemical classes, but not the total mixture, affected cell number.


Author(s):  
Jianying Guo ◽  
Peizhe Wang ◽  
Berna Sozen ◽  
Hui Qiu ◽  
Yonglin Zhu ◽  
...  

2021 ◽  
pp. 247255522110024
Author(s):  
Yunhong Nong ◽  
Yanyan Hou ◽  
Yuting Pu ◽  
Si Li ◽  
Yan Lan

Throughout recent decades, histone deacetylase (HDAC) inhibitors have shown encouraging potential in cancer treatment, and several pan-HDAC inhibitors have been approved for treating malignant cancers. Numerous adverse effects of pan-HDAC inhibitors have been reported, however, during preclinical and clinical evaluations. To avoid undesirable responses, an increasing number of investigations are focusing on the development of isotype-selective HDAC inhibitors. In this study, we present an effective and quantitative cellular assay using high-content analysis (HCA) to determine compounds’ inhibition of the activity of HDAC6 and Class I HDAC isoforms, by detecting the acetylation of their corresponding substrates (i.e., α-tubulin and histone H3). Several conditions that are critical for HCA assays, such as cell seeding number, fixation and permeabilization reagent, and antibody dilution, have been fully validated in this study. We used selective HDAC6 inhibitors and inhibitors targeting different HDAC isoforms to optimize and validate the capability of the HCA assay. The results indicated that the HCA assay is a robust assay for quantifying compounds’ selectivity of HDAC6 and Class I HDAC isoforms in cells. Moreover, we screened a panel of compounds for HDAC6 selectivity using this HCA assay, which provided valuable information for the structure–activity relationship (SAR). In summary, our results suggest that the HCA assay is a powerful tool for screening selective HDAC6 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document