deep underground
Recently Published Documents


TOTAL DOCUMENTS

597
(FIVE YEARS 164)

H-INDEX

30
(FIVE YEARS 5)

Author(s):  
Jianglai Liu

Dark matter, an invisible substance which constitutes 85% of the matter in the observable universe, is one of the greatest puzzles in physics and astronomy today. Dark matter can be made of a new type of fundamental particle, not yet observed due to its feeble interactions with visible matter. In this talk, we present the first results of PandaX-4T, a 4-ton-scale liquid xenon dark matter observatory, searching for these dark matter particles from deep underground. We will briefly summarize the performance of PandaX-4T, introduces details in the data analysis, and present the latest search results on dark matter-nucleon interactions.


2022 ◽  
Vol 17 (01) ◽  
pp. P01005
Author(s):  
A. Abed Abud ◽  
B. Abi ◽  
R. Acciarri ◽  
M.A. Acero ◽  
M.R. Adames ◽  
...  

Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Abd Al Karim Haj Ismail ◽  
◽  

The muonic component of air showers is sensitive to the mass and energy of the primary cosmic ray and is the most abundant component of charged particles arriving at the surface, and able to penetrate deep underground. The muon charge ratio, defined as the number of positive over negatively charged muons, is a very interesting quantity for the study of hadronic interactions at high energies and the nature of cosmic ray primaries. Furthermore, Earth's atmosphere is the development medium of cosmic air showers before they arrive at the ground. Therefore, variations in the density of the atmosphere between seasons must be studied. It is also very important to account for the zenith angular dependence of atmospheric muons, in particular for showers penetrating the atmosphere at high zenith angles. We present a study of the muon charge ratio using Monte Carlo simulations of two cosmic primaries, proton, and iron, of 100 TeV and 1 PeV energies, and with a zenith angle of 0° to 60°. The dependence on the direction of extensive air showers EAS and their radial distance appears to be very pronounced. In addition, the muon density is discussed assuming the Central European Atmosphere in June and December.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1906
Author(s):  
Jiaqi Zhu ◽  
Shunchuan Wu ◽  
Haiyong Cheng ◽  
Xiaojie Geng ◽  
Jin Liu

Cemented paste backfill is critical for the development of green mines, the safe exploitation of mineral resources deep underground, and the efficient disposal of solid wastes produced by mining. In this paper, the mechanism underpinning how the pumping agent works was studied. The number, area, and fractal dimension of pores in the microstructure of fresh paste were quantitatively analyzed using scanning electron microscopy (SEM), image processing, and fractal theory, and the response of flocs was investigated. The results show that floc networks disintegrated and the liquid network became the dominant structure under the action of the pumping agent, which enhanced the lubrication and promotion of multi-scale particles. In addition, the force chains became fragile and scattered, diminishing the yield stress of the paste. The pores had a more homogenized dimension and the porosity was 15.52% higher. The increase in the fractal dimension of the pores indicated that there was a higher self-similarity, in terms of microstructure, with a strengthened liquid network. The migration of floc structures contributed to the enhancement of the fluidity and rheology of the paste. This study provides insights into the effects of floc and liquid networks on the performance of paste, and it is of engineering significance in terms of realizing safe and efficient CPB operations.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2965
Author(s):  
Yuantian Sun ◽  
Guichen Li ◽  
Sen Yang

Accurately evaluating rockburst intensity has attracted much attention in these recent years, as it can guide the design of engineering in deep underground conditions and avoid injury to people. In this study, a new ensemble classifier combining a random forest classifier (RF) and beetle antennae search algorithm (BAS) has been designed and applied to improve the accuracy of rockburst classification. A large dataset was collected from across the world to achieve a comprehensive representation, in which five key influencing factors were selected as the input variables, and the rockburst intensity was selected as the output. The proposed model BAS-RF was then validated by the dataset. The results show that BAS could tune the hyperparameters of RF efficiently, and the optimum model exhibited a high performance on an independent test set of rockburst data and new engineering projects. According to the ensemble RF-BAS model, the feature importance was calculated. Furthermore, the accuracy of the proposed model on rockburst prediction was higher than the conventional machine learning models and empirical models, which means that the proposed model is efficient and accurate.


2021 ◽  
Author(s):  
Yang Wang ◽  
Yuxin He ◽  
Jingchen Wang ◽  
Chao Liu ◽  
Longguo Li ◽  
...  

Abstract Exploring and utilizing the agronomic potential of deep-underground is one of the ways to cope with the challenges of sudden environmental change on agriculture. Understanding the effects of environmental stresses on the morphological and physiological indicators of crop seeds after their storage deep-underground is crucial to developing and implementing strategies for agriculture in the deep-underground space. In this study, we stored canola seeds in envelopes or sealed packages at 0, 240, 690, and 1,410 m in a gold mine. Seeds in envelopes were retrieved at 42, 66, 90, and 227 days of storage, whereas seeds in sealed packages were retrieved at 66 and 227 days of storage. The germination tests were conducted to investigate the effects of storage depth, duration, and packing method on stored and non-stored seeds. Results showed that increased depth and duration led to decreased seed germination rate, with the germination and vigor indexes also descending to varying degrees. Increased hypocotyl length and biomass accumulation suggested that deep-underground environment had more significant compensatory effect on seed germination. For all indicators, the performance of seeds sealed in packages was superior to those stored in envelopes. Regression analysis showed that it was difficult to obtain the optimal value of each indicator simultaneously. The successful germination experiment foreshadowed the possibilities of deep-underground agriculture in the future.


2021 ◽  
Vol 14 (22) ◽  
Author(s):  
Xiaochun Xiao ◽  
Heng Zhu ◽  
Haiyan Liu ◽  
Minjie Ding ◽  
Jun Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document