clinical research informatics
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 12)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Matthias Löbe

The term ‘metadata’ is mentioned in every one of the FAIR principles. Metadata is without question important for findability, accessibility, and reusability, but essential for interoperability. Standardized schemas have been developed by various stakeholders for decades, but too rarely come to practical use. The reason for this is that the application domain is not clearly understood. In many bio-medical research projects, the need for metadata is recognized at some point, but there is not only a lack of overview of existing standards, but also a lack of correct assessment of what individual metadata schemas were actually made for. This paper differentiates different application scenarios for metadata in clinical research.


2021 ◽  
Vol 30 (01) ◽  
pp. 233-238
Author(s):  
Christel Daniel ◽  
Ali Bellamine ◽  
Dipak Kalra ◽  

Summary Objectives: To summarize key contributions to current research in the field of Clinical Research Informatics (CRI) and to select best papers published in 2020. Method: A bibliographic search using a combination of Medical Subject Headings (MeSH) descriptors and free-text terms on CRI was performed using PubMed, followed by a double-blind review in order to select a list of candidate best papers to be then peer-reviewed by external reviewers. After peer-review ranking, a consensus meeting between two section editors and the editorial team was organized to finally conclude on the selected four best papers. Results: Among the 877 papers published in 2020 and returned by the search, there were four best papers selected. The first best paper describes a method for mining temporal sequences from clinical documents to infer disease trajectories and enhancing high-throughput phenotyping. The authors of the second best paper demonstrate that the generation of synthetic Electronic Health Record (EHR) data through Generative Adversarial Networks (GANs) could be substantially improved by more appropriate training and evaluation criteria. The third best paper offers an efficient advance on methods to detect adverse drug events by computer-assisting expert reviewers with annotated candidate mentions in clinical documents. The large-scale data quality assessment study reported by the fourth best paper has clinical research informatics implications, in terms of the trustworthiness of inferences made from analysing electronic health records. Conclusions: The most significant research efforts in the CRI field are currently focusing on data science with active research in the development and evaluation of Artificial Intelligence/Machine Learning (AI/ML) algorithms based on ever more intensive use of real-world data and especially EHR real or synthetic data. A major lesson that the coronavirus disease 2019 (COVID-19) pandemic has already taught the scientific CRI community is that timely international high-quality data-sharing and collaborative data analysis is absolutely vital to inform policy decisions.


2021 ◽  
pp. 913-940
Author(s):  
Philip R. O. Payne ◽  
Peter J. Embi ◽  
James J. Cimino

Author(s):  
Alyssa Long ◽  
Alexander Glogowski ◽  
Matthew Meppiel ◽  
Lisa De Vito ◽  
Eric Engle ◽  
...  

Abstract Objective Clinical research informatics tools are necessary to support comprehensive studies of infectious diseases. The National Institute of Allergy and Infectious Diseases (NIAID) developed the publicly accessible Tuberculosis Data Exploration Portal (TB DEPOT) to address the complex etiology of tuberculosis (TB). Materials and Methods TB DEPOT displays deidentified patient case data and facilitates analyses across a wide range of clinical, socioeconomic, genomic, and radiological factors. The solution is built using Amazon Web Services cloud-based infrastructure, .NET Core, Angular, Highcharts, R, PLINK, and other custom-developed services. Structured patient data, pathogen genomic variants, and medical images are integrated into the solution to allow seamless filtering across data domains. Results Researchers can use TB DEPOT to query TB patient cases, create and save patient cohorts, and execute comparative statistical analyses on demand. The tool supports user-driven data exploration and fulfills the National Institute of Health’s Findable, Accessible, Interoperable, and Reusable (FAIR) principles. Discussion TB DEPOT is the first tool of its kind in the field of TB research to integrate multidimensional data from TB patient cases. Its scalable and flexible architectural design has accommodated growth in the data, organizations, types of data, feature requests, and usage. Use of client-side technologies over server-side technologies and prioritizing maintenance have been important lessons learned. Future directions are dynamically prioritized and key functionality is shared through an application programming interface. Conclusion This paper describes the platform development methodology, resulting functionality, benefits, and technical considerations of a clinical research informatics application to support increased understanding of TB.


2020 ◽  
Vol 29 (01) ◽  
pp. 193-202
Author(s):  
Anthony Solomonides

Objectives: Clinical Research Informatics (CRI) declares its scope in its name, but its content, both in terms of the clinical research it supports—and sometimes initiates—and the methods it has developed over time, reach much further than the name suggests. The goal of this review is to celebrate the extraordinary diversity of activity and of results, not as a prize-giving pageant, but in recognition of the field, the community that both serves and is sustained by it, and of its interdisciplinarity and its international dimension. Methods: Beyond personal awareness of a range of work commensurate with the author’s own research, it is clear that, even with a thorough literature search, a comprehensive review is impossible. Moreover, the field has grown and subdivided to an extent that makes it very hard for one individual to be familiar with every branch or with more than a few branches in any depth. A literature survey was conducted that focused on informatics-related terms in the general biomedical and healthcare literature, and specific concerns (“artificial intelligence”, “data models”, “analytics”, etc.) in the biomedical informatics (BMI) literature. In addition to a selection from the results from these searches, suggestive references within them were also considered. Results: The substantive sections of the paper—Artificial Intelligence, Machine Learning, and “Big Data” Analytics; Common Data Models, Data Quality, and Standards; Phenotyping and Cohort Discovery; Privacy: Deidentification, Distributed Computation, Blockchain; Causal Inference and Real-World Evidence—provide broad coverage of these active research areas, with, no doubt, a bias towards this reviewer’s interests and preferences, landing on a number of papers that stood out in one way or another, or, alternatively, exemplified a particular line of work. Conclusions: CRI is thriving, not only in the familiar major centers of research, but more widely, throughout the world. This is not to pretend that the distribution is uniform, but to highlight the potential for this domain to play a prominent role in supporting progress in medicine, healthcare, and wellbeing everywhere. We conclude with the observation that CRI and its practitioners would make apt stewards of the new medical knowledge that their methods will bring forward.


2020 ◽  
Vol 29 (01) ◽  
pp. 203-207
Author(s):  
Christel Daniel ◽  
Dipak Kalra ◽  

Objectives: To summarize key contributions to current research in the field of Clinical Research Informatics (CRI) and to select best papers published in 2019. Method: A bibliographic search using a combination of MeSH descriptors and free-text terms on CRI was performed using PubMed, followed by a double-blind review in order to select a list of candidate best papers to be then peer-reviewed by external reviewers. After peer-review ranking, a consensus meeting between the two section editors and the editorial team was organized to finally conclude on the selected three best papers. Results: Among the 517 papers, published in 2019, returned by the search, that were in the scope of the various areas of CRI, the full review process selected three best papers. The first best paper describes the use of a homomorphic encryption technique to enable federated analysis of real-world data while complying more easily with data protection requirements. The authors of the second best paper demonstrate the evidence value of federated data networks reporting a large real world data study related to the first line treatment for hypertension. The third best paper reports the migration of the US Food and Drug Administration (FDA) adverse event reporting system database to the OMOP common data model. This work opens the combined analysis of both spontaneous reporting system and electronic health record (EHR) data for pharmacovigilance. Conclusions: The most significant research efforts in the CRI field are currently focusing on real world evidence generation and especially the reuse of EHR data. With the progress achieved this year in the areas of phenotyping, data integration, semantic interoperability, and data quality assessment, real world data is becoming more accessible and reusable. High quality data sets are key assets not only for large scale observational studies or for changing the way clinical trials are conducted but also for developing or evaluating artificial intelligence algorithms guiding clinical decision for more personalized care. And lastly, security and confidentiality, ethical and regulatory issues, and more generally speaking data governance are still active research areas this year.


2019 ◽  
Vol 4 (1) ◽  
pp. 69-72
Author(s):  
Nassira Bougrab ◽  
Dadong Li ◽  
Howard Trachtman ◽  
Scott Sherman ◽  
Rachel Thornton ◽  
...  

AbstractIn 2017, the NYU Clinical and Translational Science Institute’s Recruitment and Retention Unit created a Patient Advisory Council for Research (PACR) to provide feedback on clinical trials and health research studies. We collaborated with our clinical research informatics team to generate a random sample of patients, based on the International Classification of Diseases, Tenth Revision codes and demographic factors, for invitation via the patient portal. This approach yielded in a group that was diverse with regard to age, race/ethnicity, sex, and health conditions. This report highlights the benefits and limitations of using an electronic health record-based strategy to identify and recruit members for a PACR.


2019 ◽  
Vol 28 (01) ◽  
pp. 203-205 ◽  
Author(s):  
Christel Daniel ◽  
Dipak Kalra ◽  

Objectives: To summarize key contributions to current research in the field of Clinical Research Informatics (CRI) and to select best papers published in 2018. Method: A bibliographic search using a combination of MeSH descriptors and free-text terms on CRI was performed using PubMed, followed by a double-blind review in order to select a list of candidate best papers to be then peer-reviewed by external reviewers. After peer-review ranking, a consensus meeting of the editorial team was organized to conclude on the selection of best papers. Results: Among the 1,469 retrieved papers published in 2018 in the various areas of CRI, the full review process selected four best papers. The first best paper describes a simple algorithm detecting co-morbidities in Electronic Healthcare Records (EHRs) using a clinical data warehouse and a knowledge base. The authors of the second best paper present a federated algorithm for predicting heart failure hospital admissions based on patients' medical history described in their distributed EHRs. The third best paper reports the evaluation of an open source, interoperable, and scalable data quality assessment tool measuring completeness of data items, which can be run on different architectures (EHRs and Clinical Data Warehouses (CDWs) based on PCORnet or OMOP data models). The fourth best paper reports a data quality program conducted across 37 hospitals addressing data quality Issues through the whole data life cycle from patient to researcher. Conclusions: Research efforts in the CRI field currently focus on consolidating promises of early Distributed Research Networks aimed at maximizing the potential of large-scale, harmonized data from diverse, quickly developing digital sources. Data quality assessment methods and tools as well as privacy-enhancing techniques are major concerns. It is also notable that, following examples in the US and Asia, ambitious regional or national plans in Europe are launched that aim at developing big data and new artificial intelligence technologies to contribute to the understanding of health and diseases in whole populations and whole health systems, and returning actionable feedback loops to improve existing models of research and care. The use of “real-world" data is continuously increasing but the ultimate role of this data in clinical research remains to be determined.


Sign in / Sign up

Export Citation Format

Share Document