accumulation mechanism
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 52)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Dengyi Xiao ◽  
Mingsheng Lv ◽  
Guangcheng Hu ◽  
Wenyuan Tian ◽  
Li Wang ◽  
...  

Abstract In Western UAE, the Middle Cretaceous petroleum system is composed of Shilaif source, Mishrif/Tuwayil reservoir and Tuwayil/Ruwaydha seal. Oil is discovered in Tuwayil sandstone in DH and NN fields. Well correlation of Tuwayil siliciclastic interval shows high heterogeneity and rapid lithology varies. Currently, a few general studies about Tuwayil sandstone was published. However, detailed sedimentary facies, reservoir characteristics and accumulation mechanism about Tuwayil are ambiguous. Limitation on these aspects prohibits enlarging exploration activity of Tuwayil and makes barriers to deepen understanding of the whole K2 PS. To enhance understanding on Tuwayil formation, well data in DH, NN fields and adjacent area was integrated. Dedicated single well analysis, well correlation and petrophysics study were carried out. Cores were observed and laboratory outcomes including TS, SEM, RCA, MICP, XRD were adopted into this study. Furthermore, we have also utilized 2D&3D seismic to illustrate the spatial distribution of Tuwayil siliciclastic setting and interior sediment pattern. Basically, the Tuwayil sand-shale interval represents the infilling of Mishrif/Shilaif intrashelf basin and mainly deposits in the tidal flat-delta facies. The epi-continental clast is sourced from the Arabian shield and transferred from west to east. In Western UAE, the Tuwayil depocenter located in DH field, where 4-5 sand layers deposit with net pay of 30-40ft. In NN field, only one sand layer develops with net pay about 4-6ft. Through deposition cycles identification and seismic reflection observation, two sand groups could be recognized in this interval. The lower group is constrained in the depocenter and influenced by the paleo-geomorphology background. The upper group overpassed the former set and pinched out around north of NN. The Mishrif/Shilaif slope area is another potential belt to enlarge Tuwayil discovery, where stratigraphic onlap could be observed and it probably represents the sand pinch-out in lower sand group. For the K2 PS, previous study believed the shale between Tuwayil sand and Mishrif separate these two reservoirs and works as cap rock for Mishrif grainstone. This study suggests that this shale is too thin and not continuous enough to hold the hydrocarbon in Mishrif. On that note, Tuwayil sand and Mishrif belong to the same petroleum system in NN and may have the same OWC. In the NN field, it is quite crucial to consider the extension of Tuwayil sand during evaluating the stratigraphic prospect of Mishrif because the hydrocarbon is mostly likely charged Tuwayil sand first and then gets into underlain Mishrif. This study provides updates and understandings on sedimentary facies, depositional pattern, hydrocarbon accumulation mechanism, reservoir extension and potential identification of Tuwayil formation, which has inspiring implications for the whole K2 PS and could also de-risk the further exploration activity in Western UAE.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7445
Author(s):  
Leifu Zhang ◽  
Qun Zhao ◽  
Sizhong Peng ◽  
Zhen Qiu ◽  
Congjun Feng ◽  
...  

In the Carboniferous–Permian period, several organic-rich black shales were deposited in a marine–continental transitional environment in the Linfen area on the eastern margin of the Ordos Basin. Integrated sedimentological and organic geochemical analyses are performed on an outcrop in order to clarify the relationship between paleoenvironment and organic matter accumulation. The results of this study show that the marine–continental transitional strata of the Upper Carboniferous Benxi Formation to Lower Permian Taiyuan and Shanxi Formation exposed in the Linfen area are composed of sandstone, shale, coal, and limestone. Total organic carbon (TOC) contents of the studied samples were mainly distributed in the range of 0.59%–35.4%, with an average of 7.32%. From Benxi Formation to Shanxi formation, the humidity gradually increased, and the climate gradually changed from hot and humid to warm and humid during Carboniferous to Permian. The deposition of the Shanxi Formation ended with the climate returning to hot and humid, having an oxic-suboxic conditions and a high paleoproductivity. Paleoredox conditions and paleoproductivity are the two vital factors controlling the formation of organic matter in black shales. The transitional environment characterized by oxic-suboxic, relatively high deposition rate, and various source of organic matter, although different from the marine environment, provides a good material basis for the deposition of organic-rich shales.


Author(s):  
Ryan N. Douglas ◽  
Hua Yang ◽  
Bing Zhang ◽  
Chen Chen ◽  
Fangpu Han ◽  
...  

AbstractThe B chromosome of maize undergoes nondisjunction at the second pollen mitosis as part of its accumulation mechanism. Previous work identified 9-Bic-1 (9-B inactivated centromere-1), which comprises an epigenetically silenced B chromosome centromere that was translocated to the short arm of chromosome 9(9S). This chromosome is stable in isolation, but when normal B chromosomes are added to the genotype, it will attempt to undergo nondisjunction during the second pollen mitosis and usually fractures the chromosome in 9S. These broken chromosomes allow a test of whether the inactive centromere is reactivated or whether a de novo centromere is formed elsewhere on the chromosome to allow recovery of fragments. Breakpoint determination on the B chromosome and chromosome 9 showed that mini chromosome B1104 has the same breakpoint as 9-Bic-1 in the B centromere region and includes a portion of 9S. CENH3 binding was found on the B centromere region and on 9S, suggesting both centromere reactivation and de novo centromere formation. Another mini chromosome, B496, showed evidence of rearrangement, but it also only showed evidence for a de novo centromere. Other mini chromosome fragments recovered were directly derived from the B chromosome with breakpoints concentrated near the centromeric knob region, which suggests that the B chromosome is broken at a low frequency due to the failure of the sister chromatids to separate at the second pollen mitosis. Our results indicate that both reactivation and de novo centromere formation could occur on fragments derived from the progenitor possessing an inactive centromere.


2021 ◽  
Vol 23 (8) ◽  
Author(s):  
Koki Okada ◽  
Kento Kodama ◽  
Ken Yamamoto ◽  
Masahiro Motosuke

Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 255
Author(s):  
Ziyi Luo ◽  
Hao Xu ◽  
Liwei Liu ◽  
Tymish Y. Ohulchanskyy ◽  
Junle Qu

Alzheimer’s disease (AD) is a multifactorial, irreversible, and incurable neurodegenerative disease. The main pathological feature of AD is the deposition of misfolded β-amyloid protein (Aβ) plaques in the brain. The abnormal accumulation of Aβ plaques leads to the loss of some neuron functions, further causing the neuron entanglement and the corresponding functional damage, which has a great impact on memory and cognitive functions. Hence, studying the accumulation mechanism of Aβ in the brain and its effect on other tissues is of great significance for the early diagnosis of AD. The current clinical studies of Aβ accumulation mainly rely on medical imaging techniques, which have some deficiencies in sensitivity and specificity. Optical imaging has recently become a research hotspot in the medical field and clinical applications, manifesting noninvasiveness, high sensitivity, absence of ionizing radiation, high contrast, and spatial resolution. Moreover, it is now emerging as a promising tool for the diagnosis and study of Aβ buildup. This review focuses on the application of the optical imaging technique for the determination of Aβ plaques in AD research. In addition, recent advances and key operational applications are discussed.


2021 ◽  
Author(s):  
Lulu Sun ◽  
Jianli Wang ◽  
Jian Song ◽  
Xueni Du ◽  
Wenke Liu ◽  
...  

Abstract Sugar is the key factor in the formation of fruit quality. Hexose is the main form of sugar accumulated in ordinary cultivated tomatoes, while a small number of wild-type tomato varieties can also accumulate sucrose. Although several studies have focused on wild sucrose-accumulating tomatoes, the sugar accumulation mechanism in tomato is still unclear. Here, two cherry tomatoes lines that accumulated sucrose and hexose respectively were selected to analyze the assimilates unloading pathway and sugar accumulation mechanism using CF tracing, cytological observation, proteomics methods, etc. The results indicated that the later stages of fruit development were key stages for sugar accumulation, and sucrose-accumulating (S) cherry tomatoes had higher sucrose contents in the fruits, while hexose-accumulating (H) cherry tomatoes accumulated more glucose, fructose and starch. The unloading pathway of assimilates in the S cherry tomato was switched from apoplastic to symplastic during fruit development, and the opposite was true in the H type. Plasmodesmata transport may be the main means of sucrose accumulation and high activity or expression levels of acid invertase (AI) and SUT1 may be important factors in hexose accumulation in H and S cherry tomatoes, respectively. In addition to sugar metabolism, photosynthesis, fatty acid metabolism and other secondary metabolism pathways also play important roles in sugar accumulation. This study provides detailed evidence for the tomato sugar accumulation mechanism from the perspective of cell structure, physiology and molecular biology, providing a theoretical basis for the improvement of tomato quality and aiding the utilization of tomato genetic resources.


Sign in / Sign up

Export Citation Format

Share Document