hyperbolic diffeomorphisms
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 27)

H-INDEX

15
(FIVE YEARS 2)

Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 513-566
Author(s):  
Oliver Butterley ◽  
Niloofar Kiamari ◽  
Carlangelo Liverani

Abstract We study the spectrum of transfer operators associated to various dynamical systems. Our aim is to obtain precise information on the discrete spectrum. To this end we propose a unitary approach. We consider various settings where new information can be obtained following different branches along the proposed path. These settings include affine expanding Markov maps, uniformly expanding Markov maps, non-uniformly expanding or simply monotone maps, hyperbolic diffeomorphisms. We believe this approach could be greatly generalised.


2021 ◽  
pp. 1-47
Author(s):  
MARTIN MION-MOUTON

Abstract In this paper, we classify the three-dimensional partially hyperbolic diffeomorphisms whose stable, unstable, and central distributions $E^s$ , $E^u$ , and $E^c$ are smooth, such that $E^s\oplus E^u$ is a contact distribution, and whose non-wandering set equals the whole manifold. We prove that up to a finite quotient or a finite power, they are smoothly conjugated either to a time-map of an algebraic contact-Anosov flow, or to an affine partially hyperbolic automorphism of a nil- ${\mathrm {Heis}}{(3)}$ -manifold. The rigid geometric structure induced by the invariant distributions plays a fundamental part in the proof.


Author(s):  
Jiagang Yang

Abstract In this article we study physical measures for $\operatorname {C}^{1+\alpha }$ partially hyperbolic diffeomorphisms with a mostly expanding center. We show that every diffeomorphism with a mostly expanding center direction exhibits a geometrical-combinatorial structure, which we call skeleton, that determines the number, basins and supports of the physical measures. Furthermore, the skeleton allows us to describe how physical measures bifurcate as the diffeomorphism changes under $C^1$ topology. Moreover, for each diffeomorphism with a mostly expanding center, there exists a $C^1$ neighbourhood, such that diffeomorphism among a $C^1$ residual subset of this neighbourhood admits finitely many physical measures, whose basins have full volume. We also show that the physical measures for diffeomorphisms with a mostly expanding center satisfy exponential decay of correlation for any Hölder observes. In particular, we prove that every $C^2$ , partially hyperbolic, accessible diffeomorphism with 1-dimensional center and nonvanishing center exponent has exponential decay of correlations for Hölder functions.


2021 ◽  
pp. 1-54
Author(s):  
A. AVILA ◽  
MARCELO VIANA ◽  
A. WILKINSON

Abstract We explore new connections between the dynamics of conservative partially hyperbolic systems and the geometric measure-theoretic properties of their invariant foliations. Our methods are applied to two main classes of volume-preserving diffeomorphisms: fibered partially hyperbolic diffeomorphisms and center-fixing partially hyperbolic systems. When the center is one-dimensional, assuming the diffeomorphism is accessible, we prove that the disintegration of the volume measure along the center foliation is either atomic or Lebesgue. Moreover, the latter case is rigid in dimension three (this does not require accessibility): the center foliation is actually smooth and the diffeomorphism is smoothly conjugate to an explicit rigid model. A partial extension to fibered partially hyperbolic systems with compact fibers of any dimension is also obtained. A common feature of these classes of diffeomorphisms is that the center leaves either are compact or can be made compact by taking an appropriate dynamically defined quotient. For volume-preserving partially hyperbolic diffeomorphisms whose center foliation is absolutely continuous, if the generic center leaf is a circle, then every center leaf is compact.


2021 ◽  
Vol 17 (0) ◽  
pp. 557
Author(s):  
Jinhua Zhang

<p style='text-indent:20px;'>We prove that for any partially hyperbolic diffeomorphism having neutral center behavior on a 3-manifold, the center stable and center unstable foliations are complete; moreover, each leaf of center stable and center unstable foliations is a cylinder, a Möbius band or a plane.</p><p style='text-indent:20px;'>Further properties of the Bonatti–Parwani–Potrie type of examples of of partially hyperbolic diffeomorphisms are studied. These are obtained by composing the time <inline-formula><tex-math id="M1">\begin{document}$ m $\end{document}</tex-math></inline-formula>-map (for <inline-formula><tex-math id="M2">\begin{document}$ m&gt;0 $\end{document}</tex-math></inline-formula> large) of a non-transitive Anosov flow <inline-formula><tex-math id="M3">\begin{document}$ \phi_t $\end{document}</tex-math></inline-formula> on an orientable 3-manifold with Dehn twists along some transverse tori, and the examples are partially hyperbolic with one-dimensional neutral center. We prove that the center foliation is given by a topological Anosov flow which is topologically equivalent to <inline-formula><tex-math id="M4">\begin{document}$ \phi_t $\end{document}</tex-math></inline-formula>. We also prove that for the original example constructed by Bonatti–Parwani–Potrie, the center stable and center unstable foliations are robustly complete.</p>


Sign in / Sign up

Export Citation Format

Share Document