gelation behavior
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 57)

H-INDEX

30
(FIVE YEARS 4)

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 37
Author(s):  
Artur J. Martins ◽  
Fátima Cerqueira ◽  
António A. Vicente ◽  
Rosiane L. Cunha ◽  
Lorenzo M. Pastrana ◽  
...  

Novel fat mimetic materials, such as oleogels, are advancing the personalization of healthier food products and can be developed from low molecular weight compounds such as γ oryzanol and β-sitosterol. Following molecular assembly, the formation of a tubular system ensues, which seems to be influenced by elements such as the oleogelators’ concentration and ratio, cooling rates, and storage periods. Sterol-based oleogels were formulated under distinct environmental conditions, and a comprehensive study aimed to assess the effects of the mentioned factors on oleogel formation and stability, through visual observation and by using techniques such as small-angle X-ray scattering, X-ray diffraction, confocal Raman spectroscopy, rheology, and polarized microscopy. The long, rod-like conformations, identified by small-angle X-ray scattering, showed that different cooling rates influence oleogels’ texture. Raman spectra showed that the stabilization time is associated with the interfibrillar aggregation, which occurred differently for 8 and 10 wt%, with a proven relationship between ferulic acid and the tubular formation. This report gives fundamental insight into the critical point of gelation, referring to the time scale of the molecular stabilization. Our results verify that understanding the structuring mechanisms of oleogelation is decisive for the processing and manufacturing of novel foods which integrate oleogels in their structure.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 135
Author(s):  
Yanli Zhao ◽  
Shiqi Xue ◽  
Xinyue Zhang ◽  
Tiehua Zhang ◽  
Xue Shen

This study investigated the effects of high-intensity ultrasound (HUS) and transglutaminase pretreatment on the gelation behavior of whey protein soluble aggregate (WPISA) emulsions. HUS pretreatment and TGase-mediated cross-linking delayed the onset of gelation but significantly increased (p < 0.05) the gel firmness (G′) both after gel formation at 25 °C and during storage at 4 °C. The frequency sweep test indicated that all gels had a similar frequency dependence at 4 and 25 °C, and the elasticity and viscosity of the WPISA-stabilized emulsion gel were significantly enhanced by HUS pretreatment and TGase-mediated cross-linking (p < 0.05). HUS and TGase-mediated cross-linking greatly improved the textural properties of WPISA-stabilized emulsion gels, as revealed by their increases in gel hardness, cohesiveness, resilience, and chewiness. HUS pretreatment and TGase-mediated cross-linking significantly increased the water-holding capacity but decreased the swelling ratios of the gels (p < 0.05). Interactive force analysis confirmed that noncovalent interactions, disulfide bonds, and TGase-induced covalent cross-links were all involved in the formation of gel networks. In conclusion, the combination of HUS and TGase-mediated cross-linking were beneficial for improving the gelation properties of WPISA-stabilized emulsion as a controlled release vehicle for potential food industrial applications.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3025
Author(s):  
Marieta Constantin ◽  
Bogdan Cosman ◽  
Maria Bercea ◽  
Gabriela-Liliana Ailiesei ◽  
Gheorghe Fundueanu

A thermosensitive copolymer composed of amphiphilic triblock copolymer, poloxamer 407, grafted on hydrophilic pullulan with pendant carboxymethyl groups (CMP) was prepared and characterized. The structure of the new copolymer was assessed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. The content of the poloxamer in the grafted copolymer was 83.8% (w/w). The effect of the copolymer concentration on the gelation behavior was analyzed by the vertical method and rheological tests; the gel phase of the copolymer occurred at a lower concentration (11%, w/v) as compared with poloxamer (18%, w/v). The starting gelation time under the simulated physiological conditions (phosphate buffer with a pH of 7.4, at 37 °C) was sensitive on the rest temperature before the test, this being 990 s and 280 s after 24 h rest at 4 °C and 20 °C, respectively. The rheological tests evidenced a high elasticity and excellent ability of the copolymer to recover the initial structure after the removal of the applied force or external stimuli. Moreover, the hydrogel has proved a sustained release of amoxicillin (taken as a model drug) over 168 h. Taken together, the results clearly indicate that this copolymer can be used as an injectable hydrogel.


2021 ◽  
Vol 349 ◽  
pp. 129066
Author(s):  
Shan Qian ◽  
Peipei Dou ◽  
Junlan Wang ◽  
Lin Chen ◽  
Xinglian Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document