epithelial phenotype
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 49)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 913
Author(s):  
Veronica Riccioni ◽  
Flavia Trionfetti ◽  
Claudia Montaldo ◽  
Sabrina Garbo ◽  
Francesco Marocco ◽  
...  

Heterogeneous nuclear ribonucleoproteins (hnRNPs) control gene expression by acting at multiple levels and are often deregulated in epithelial tumors; however, their roles in the fine regulation of cellular reprogramming, specifically in epithelial–mesenchymal transition (EMT), remain largely unknown. Here, we focused on the hnRNP-Q (also known as SYNCRIP), showing by molecular analysis that in hepatocytes it acts as a “mesenchymal” gene, being induced by TGFβ and modulating the EMT. SYNCRIP silencing limits the induction of the mesenchymal program and maintains the epithelial phenotype. Notably, in HCC invasive cells, SYNCRIP knockdown induces a mesenchymal–epithelial transition (MET), negatively regulating their mesenchymal phenotype and significantly impairing their migratory capacity. In exploring possible molecular mechanisms underlying these observations, we identified a set of miRNAs (i.e., miR-181-a1-3p, miR-181-b1-3p, miR-122-5p, miR-200a-5p, and miR-let7g-5p), previously shown to exert pro- or anti-EMT activities, significantly impacted by SYNCRIP interference during EMT/MET dynamics and gathered insights, suggesting the possible involvement of this RNA binding protein in their transcriptional regulation.


2022 ◽  
Vol 23 (2) ◽  
pp. 800
Author(s):  
Monica Fedele ◽  
Riccardo Sgarra ◽  
Sabrina Battista ◽  
Laura Cerchia ◽  
Guidalberto Manfioletti

The transition between epithelial and mesenchymal phenotype is emerging as a key determinant of tumor cell invasion and metastasis. It is a plastic process in which epithelial cells first acquire the ability to invade the extracellular matrix and migrate into the bloodstream via transdifferentiation into mesenchymal cells, a phenomenon known as epithelial–mesenchymal transition (EMT), and then reacquire the epithelial phenotype, the reverse process called mesenchymal–epithelial transition (MET), to colonize a new organ. During all metastatic stages, metabolic changes, which give cancer cells the ability to adapt to increased energy demand and to withstand a hostile new environment, are also important determinants of successful cancer progression. In this review, we describe the complex interaction between EMT and metabolism during tumor progression. First, we outline the main connections between the two processes, with particular emphasis on the role of cancer stem cells and LncRNAs. Then, we focus on some specific cancers, such as breast, lung, and thyroid cancer.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Garyfallia Pantelaiou-Prokaki ◽  
Iga Mieczkowska ◽  
Geske E. Schmidt ◽  
Sonja Fritzsche ◽  
Evangelos Prokakis ◽  
...  

Abstract Background Basal-like breast cancer (BLBC) is one of the most aggressive malignant diseases in women with an increased metastatic behavior and poor prognosis compared to other molecular subtypes of breast cancer. Resistance to chemotherapy is the main cause of treatment failure in BLBC. Therefore, novel therapeutic strategies counteracting the gain of aggressiveness underlying therapy resistance are urgently needed. The epithelial-to-mesenchymal transition (EMT) has been established as one central process stimulating cancer cell migratory capacity but also acquisition of chemotherapy-resistant properties. In this study, we aimed to uncover epigenetic factors involved in the EMT-transcriptional program occurring in BLBC cells surviving conventional chemotherapy. Results Using whole transcriptome data from a murine mammary carcinoma cell line (pG-2), we identified upregulation of Hdac4, 7 and 8 in tumor cells surviving conventional chemotherapy. Subsequent analyses of human BLBC patient datasets and cell lines established HDAC8 as the most promising factor sustaining tumor cell viability. ChIP-sequencing data analysis identified a pronounced loss of H3K27ac at regulatory regions of master transcription factors (TFs) of epithelial phenotype like Gata3, Elf5, Rora and Grhl2 upon chemotherapy. Interestingly, impairment of HDAC8 activity reverted epithelial-TFs levels. Furthermore, loss of HDAC8 activity sensitized tumor cells to chemotherapeutic treatments, even at low doses. Conclusion The current study reveals a previously unknown transcriptional repressive function of HDAC8 exerted on a panel of transcription factors involved in the maintenance of epithelial cell phenotype, thereby supporting BLBC cell survival to conventional chemotherapy. Our data establish HDAC8 as an attractive therapeutically targetable epigenetic factor to increase the efficiency of chemotherapeutics. Graphical abstract


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261138
Author(s):  
Xiaoling Leng ◽  
Guofu Huang ◽  
Siyi Li ◽  
Miaomiao Yao ◽  
Jianbing Ding ◽  
...  

Objective This study is to explore the correlation between the contrast-enhanced ultrasound (CEUS) characteristics of breast cancer and the epithelial-mesenchyme transformation (EMT). Methods Totally 119 patients of breast cancer underwent CEUS. Tissues in the active area were collected and subjected to the immunohistochemical detection, PT-PCR and Western blot. Correlation analysis was conducted between the clinical pathological parameters and the CEUS indicators. Results The expression levels of CD44, N-cadherin, and β-catenin in breast cancer tissues were higher than those in adjacent tissues (P<0.05). However, the expression levels of CD24 and E-cadherin in breast cancer tissues were lower than those in adjacent tissues (P<0.05). There was no significant difference in E-cadherin mRNA and Vimentin levels between cancer and adjacent tissues (P>0.05). The expressions were up-regulated in the CSCs, with higher histological grade, lymph node metastasis, and negative estrogen receptor (ER) expression. Smaller breast tumors, with no lymph node metastasis, lower clinical stage, and positive ER expression, tended to exhibit the up-regulated epithelial phenotype. Breast tumors, with high histological grade, lymph node metastasis, high clinical staging grade, and negative ER expression, tended to exhibit the up-regulated interstitial phenotype. The peak intensity of the time-intensity curve (TIC) for the CEUS was positively correlated with the CSC marker CD44 and the interstitial phenotype marker N-cadherin. The starting time of enhancement was negatively correlated with the N-cadherin. Area under the curve was positively correlated with the expression of CD44 and N-cadherin, while negatively correlated with the epithelial phenotype marker β-catenin. The time to peak was negatively correlated with the interstitial phenotypes Vimentin and N-cadherin, with no correlation with the E-cadherin or β-catenin. Conclusion Breast cancers show the enlarged lesions after enlargement and perfusion defect for the CEUS. The fast-in pattern, high enhancement, and high perfusion in the TIC are correlated with the CSCs and EMT expressions, suggesting poor disease prognosis.


Epigenomes ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 27
Author(s):  
Maria Fortunata Lofiego ◽  
Sara Cannito ◽  
Carolina Fazio ◽  
Francesca Piazzini ◽  
Ornella Cutaia ◽  
...  

Malignant pleural mesothelioma (MPM) is an aggressive malignancy with a severe prognosis, and with a long-standing need for more effective therapeutic approaches. However, treatment with immune checkpoint inhibitors is becoming an increasingly effective strategy for MPM patients. In this scenario, epigenetic modifications may negatively regulate the interplay between immune and malignant cells within the tumor microenvironment, thus contributing to the highly immunosuppressive contexture of MPM that may limit the efficacy of immunotherapy. Aiming to further improve prospectively the clinical efficacy of immunotherapeutic approaches in MPM, we investigated the immunomodulatory potential of different classes of epigenetic drugs (i.e., DNA hypomethylating agent (DHA) guadecitabine, histone deacetylase inhibitors VPA and SAHA, or EZH2 inhibitors EPZ-6438) in epithelioid, biphasic, and sarcomatoid MPM cell lines, by cytofluorimetric and real-time PCR analyses. We also characterized the effects of the DHA, guadecitabine, on the gene expression profiles (GEP) of the investigated MPM cell lines by the nCounter platform. Among investigated drugs, exposure of MPM cells to guadecitabine, either alone or in combination with VPA, SAHA and EPZ-6438 demonstrated to be the main driver of the induction/upregulation of immune molecules functionally crucial in host-tumor interaction (i.e., HLA class I, ICAM-1 and cancer testis antigens) in all three MPM subtypes investigated. Additionally, GEP demonstrated that treatment with guadecitabine led to the activation of genes involved in several immune-related functional classes mainly in the sarcomatoid subtype. Furthermore, among investigated MPM subtypes, DHA-induced CDH1 expression that contributes to restoring the epithelial phenotype was highest in sarcomatoid cells. Altogether, our results contribute to providing the rationale to develop new epigenetically-based immunotherapeutic approaches for MPM patients, potentially tailored to the specific histologic subtypes.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3435
Author(s):  
Ewa Nowak ◽  
Ilona Bednarek

Epithelial to mesenchymal transition (EMT) occurs during the pathological process associated with tumor progression and is considered to influence and promote the metastatic cascade. Characterized by loss of cell adhesion and apex base polarity, EMT enhances cell motility and metastasis. The key markers of the epithelial to mesenchymal transition are proteins characteristic of the epithelial phenotype, e.g., E-cadherin, cytokeratins, occludin, or desmoplakin, the concentration and activity of which are reduced during this process. On the other hand, as a result of acquiring the characteristics of mesenchymal cells, an increased amount of N-cadherin, vimentin, fibronectin, or vitronectin is observed. Importantly, epithelial cells undergo partial EMT where some of the cells show both epithelial and mesenchymal characteristics. The significant influence of epigenetic regulatory mechanisms is observed in the gene expression involved in EMT. Among the epigenetic modifications accompanying incorrect genetic reprogramming in cancer are changes in the level of DNA methylation within the CpG islands and posttranslational covalent changes of histone proteins. All observed modifications, which are stable but reversible changes, affect the level of gene expression leading to the development and progression of the disease, and consequently affect the uncontrolled growth of the population of cancer cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruchi Sharma ◽  
Aman George ◽  
Malika Nimmagadda ◽  
Davide Ortolan ◽  
Barbosa-Sabanero Karla ◽  
...  

AbstractAge-related Macular Degeneration (AMD), a blinding eye disease, is characterized by pathological protein- and lipid-rich drusen deposits underneath the retinal pigment epithelium (RPE) and atrophy of the RPE monolayer in advanced disease stages - leading to photoreceptor cell death and vision loss. Currently, there are no drugs that stop drusen formation or RPE atrophy in AMD. Here we provide an iPSC-RPE AMD model that recapitulates drusen and RPE atrophy. Drusen deposition is dependent on AMD-risk-allele CFH(H/H) and anaphylatoxin triggered alternate complement signaling via the activation of NF-κB and downregulation of autophagy pathways. Through high-throughput screening we identify two drugs, L-745,870, a dopamine receptor antagonist, and aminocaproic acid, a protease inhibitor that reduce drusen deposits and restore RPE epithelial phenotype in anaphylatoxin challenged iPSC-RPE with or without the CFH(H/H) genotype. This comprehensive iPSC-RPE model replicates key AMD phenotypes, provides molecular insight into the role of CFH(H/H) risk-allele in AMD, and discovers two candidate drugs to treat AMD.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5874
Author(s):  
Ilaria Cavallari ◽  
Francesco Ciccarese ◽  
Evgeniya Sharova ◽  
Loredana Urso ◽  
Vittoria Raimondi ◽  
...  

The miR-200 family of microRNAs (miRNAs) includes miR-200a, miR-200b, miR-200c, miR-141 and miR-429, five evolutionarily conserved miRNAs that are encoded in two clusters of hairpin precursors located on human chromosome 1 (miR-200b, miR-200a and miR-429) and chromosome 12 (miR-200c and miR-141). The mature -3p products of the precursors are abundantly expressed in epithelial cells, where they contribute to maintaining the epithelial phenotype by repressing expression of factors that favor the process of epithelial-to-mesenchymal transition (EMT), a key hallmark of oncogenic transformation. Extensive studies of the expression and interactions of these miRNAs with cell signaling pathways indicate that they can exert both tumor suppressor- and pro-metastatic functions, and may serve as biomarkers of epithelial cancers. This review provides a summary of the role of miR-200 family members in EMT, factors that regulate their expression, and important targets for miR-200-mediated repression that are involved in EMT. The second part of the review discusses the potential utility of circulating miR-200 family members as diagnostic/prognostic biomarkers for breast, colorectal, lung, ovarian, prostate and bladder cancers.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5325
Author(s):  
Mami Kurosaki ◽  
Mineko Terao ◽  
Dawei Liu ◽  
Adriana Zanetti ◽  
Luca Guarrera ◽  
...  

Circular RNAs are regulatory molecules involved in numerous cellular processes and may be involved in tumour growth and diffusion. Here, we define the expression of 15 selected circular RNAs, which may control the process of epithelial-to-mesenchymal transition, using a panel of 18 breast cancer cell lines recapitulating the heterogeneity of these tumours and consisting of three groups according to the mesenchymal/epithelial phenotype. A circular RNA from the DOCK1 gene (hsa_circ_0020397) shows low/undetectable levels in triple-negative mesenchymal cell lines, while its content is high in epithelial cell lines, independent of estrogen receptor or HER2 positivity. RNA-sequencing experiments performed on the triple-negative/mesenchymal MDA-MB-231 and MDA-MB-157 cell lines engineered to overexpress hsa_circ_0020397 demonstrate that the circRNA influences the expression of 110 common genes. Pathway analysis of these genes indicates that overexpression of the circular RNA differentiates the two mesenchymal cell lines along the epithelial pathway and increases cell-to-cell adhesion. This is accompanied by growth inhibition and a reduction in the random/directional motility of the cell lines. The upregulated AGR2, ENPP1, and PPP1R9A genes as well as the downregulated APOE, AQP3, CD99L2, and IGFBP4 genes show an opposite regulation by hsa_circ_0020397 silencing in luminal CAMA1 cells. The results provide novel insights into the role played by specific circular RNAs in the generation/progression of breast cancer.


Oncogene ◽  
2021 ◽  
Author(s):  
Liang Yu ◽  
Can Cao ◽  
Xu Li ◽  
Mili Zhang ◽  
Qisheng Gu ◽  
...  

AbstractThe EMT (epithelial-to-mesenchymal-transition) subtype of gastric cancer (GC) is associated with poor treatment responses and unfavorable clinical outcomes. Despite the broad physiological roles of the micro-RNA (miR)-200 family, they largely serve to maintain the overall epithelial phenotype. However, during late-stage gastric tumorigenesis, members of the miR-200 family are markedly suppressed, resulting in the transition to the mesenchymal state and the acquisition of invasive properties. As such, the miR-200 family represents a robust molecular marker of EMT, and subsequently, disease severity and prognosis. Most reports have studied the effect of single miR-200 family member knockdown. Here, we employ a multiplex CRISPR/Cas9 system to generate a complete miR-200 family knockout (FKO) to investigate their collective and summative role in regulating key cellular processes during GC pathogenesis. Genetic deletion of all miR-200s in the human GC cell lines induced potent morphological alterations, G1/S cell cycle arrest, increased senescence-associated β-galactosidase (SA-β−Gal) activity, and aberrant metabolism, collectively resembling the senescent phenotype. Coupling RNA-seq data with publicly available datasets, we revealed a clear separation of senescent and non-senescent states amongst FKO cells and control cells, respectively. Further analysis identified key senescence-associated secretory phenotype (SASP) components in FKO cells and a positive feedback loop for maintenance of the senescent state controlled by activation of TGF-β and TNF-α pathways. Finally, we showed that miR-200 FKO associated senescence in cancer epithelial cells significantly recruited stromal cells in the tumor microenvironment. Our work has identified a new role of miR-200 family members which function as an integrated unit serving to link senescence with EMT, two major conserved biological processes.


Sign in / Sign up

Export Citation Format

Share Document