thermal release
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 25)

H-INDEX

24
(FIVE YEARS 1)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Guo-Hui Li ◽  
Bo-Lin Zhou ◽  
Zhen Hou ◽  
Yan-Fu Wei ◽  
Rong Wen ◽  
...  

AbstractThe outstanding optoelectrical properties and high-quality factor of whispering gallery mode perovskite nanocavities make it attractive for applications in small lasers. However, efforts to make lasers with better performance have been hampered by the lack of efficient methods for the synthesis and transfer of perovskite nanocavities on desired substrate at quality required for applications. Here, we report transfer printing of perovskite nanocavities grown by chemical vapor deposition from mica substrate onto SiO2 substrate. Transferred perovskite nanocavity has an RMS roughness of ~ 1.2 nm and no thermal degradation in thermal release process. We further use femtosecond laser to excite a transferred perovskite nanocavity and measures its quality factor as high as 2580 and a lasing threshold of 27.89 μJ/cm2 which is almost unchanged as compared with pristine perovskite nanocavities. This method represents a significant step toward the realization of perovskite nanolasers with smaller sizes and better heat management as well as application in optoelectronic devices.


2021 ◽  
Vol 23 (4) ◽  
pp. 35-40
Author(s):  
Guangyong Zhu ◽  
Zuobing Xiao ◽  
Gengfa Yu ◽  
Guangxu Zhu ◽  
Yunwei Niu ◽  
...  

Abstract Furfuryl mercaptan has the aroma characteristics of coffee. However, it is unstable during storage of coffee brew and roasted coffee. In order to enhance the stability of furfuryl mercaptan, furfuryl mercaptan-β-cyclodextrin inclusion complex was synthesized using the precipitation method in this work. Fourier transform infrared spectroscopy, x-ray diffraction, and thermogravimetric analysis (TG) were used to characterize the resulting products. The interaction of furfuryl mercaptan with β-cyclodextrin was investigated by the molecular mechanics (MM) method. These changes in FTIR and XRD gave supporting evidence for the successful formation of furfuryl mercaptan-β-cyclodextrin inclusion complex. The TG results showed that the formation of furfuryl mercaptan-β-cyclodextrin inclusion complex could improve the thermal stability of furfuryl mercaptan and provide a long-lasting effect. The structure of furfuryl mercaptan-β-cyclodextrin inclusion complex with the minimum energy was obtained by MM2 calculation, and the minimum binding energy was –77.0 kJ mol−1 at –1.96 × 10–10 m.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joonghoon Choi ◽  
Dae Kwon Jin ◽  
Junseok Jeong ◽  
Bong Kyun Kang ◽  
Woo Seok Yang ◽  
...  

AbstractWe report on morphology-controlled remote epitaxy via hydrothermal growth of ZnO micro- and nanostructure crystals on graphene-coated GaN substrate. The morphology control is achieved to grow diverse morphologies of ZnO from nanowire to microdisk by changing additives of wet chemical solution at a fixed nutrient concentration. Although the growth of ZnO is carried out on poly-domain graphene-coated GaN substrate, the direction of hexagonal sidewall facet of ZnO is homogeneous over the whole ZnO-grown area on graphene/GaN because of strong remote epitaxial relation between ZnO and GaN across graphene. Atomic-resolution transmission electron microscopy corroborates the remote epitaxial relation. The non-covalent interface is applied to mechanically lift off the overlayer of ZnO crystals via a thermal release tape. The mechanism of facet-selective morphology control of ZnO is discussed in terms of electrostatic interaction between nutrient solution and facet surface passivated with functional groups derived from the chemical additives.


2021 ◽  
Author(s):  
Guohui Li ◽  
BoLin Zhou ◽  
Zhen Hou ◽  
YanFu Wei ◽  
Rong Wen ◽  
...  

Abstract The outstanding optoelectrical properties and high-quality factor of whispering gallery mode perovskite nanocavities make it attractive for applications in small lasers. However, efforts to make lasers with better performance have been hampered by the lack of efficient methods for the synthesis and transfer of perovskite nanocavities on desired substrate at the quality required for applications. Here, we report transfer printing of perovskite nanocavities grown by chemical vapor deposition from mica substrate onto SiO2 substrate. Transferred perovskite nanocavity has an RMS roughness of ~1.2 nm and no thermal degradation in thermal release process. We further use femtosecond laser to excite a transferred perovskite nanocavity and measures its quality factor as high as 2580 and a lasing threshold of 27.89 µJ/cm2 which is almost unchanged as compared with pristine perovskite nanocavities. This method represents a significant step toward the realization of perovskite nanolasers with smaller sizes and better heat management as well as application in optoelectronic devices.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3561
Author(s):  
Pieter Samyn

The use of paper as a sustainable packaging material is favored, but it lacks sufficient barrier properties in terms of water repellence and oil resistance. Novel approaches consider active packaging materials or coatings with controlled release providing additional functionality for delivery of specific components to the surface. In this study, the development of a waterborne coating with organic nanoparticles and encapsulated sunflower oils is presented as a system for thermal release of the oil and on-demand tuning of the final barrier properties of the paper substrate. After synthesis of the nanoparticles, it seems that the encapsulation of various grades of sunflower oil (i.e., either poly-unsaturated or mono-unsaturated) strongly affects the encapsulation efficiency and thermal release profiles. The water contact angles are controlled by the oil release and chemical surface composition of the coating upon thermal heating. The oil resistance of the paper improves as a more continuous oil film is formed during thermal release. In particular, the chemical surface composition of the paper coatings is detailed by means of micro-Raman spectroscopy and surface imaging, which provide an analytical quantification tool to evaluate surface coverage, oil delivery, and variations in organic coating moieties.


Author(s):  
Maria A. Gustaytis ◽  
Irina N. Myagkaya ◽  
Victor I. Malov ◽  
Elena V. Lazareva ◽  
Olga V. Shuvaeva

Mercury speciation and the composition of mercury phases in natural and mining-related environments is studied by the thermal release analysis combined with electrothermal atomic absorption spectroscopy (TA-ET-AAS), as well as scanning electron microscopy with energy-dispersive X-ray microanalysis (SEM-EDS). The analyses are applied to laboratory-made samples bearing mercury selenide and to field samples from sites known for relatively high natural or industrially induced Hg background. They are, namely, material from the dispersion train of the Ursk sulfide tailings (Ursk Village, Kemerovo region) and debris precipitated from snow sampled in the Kurai mercury zone (Aktash Village, Gorny Altai). The TA-ET-AAS method works well in discrimination and identification of Hg sulfide and Hg selenide provided that the samples contain sufficient amounts of both compounds, but the sum HgS + HgSe can be determined at any contents of the two compounds. The presence of both mercury sulfide and mercury selenide in the samples has been confirmed by SEM-EDS microanalysis. The temperature ranges for the mercury species (Hg2+; HgS+HgSe mixture; mercury bound with organic matter (Hg-OM), including CH3Hg+) are identical in the laboratory and field samples. Therefore, the suggested approach can ensure fast and reliable detection of Hg phases in rocks exposed to supergene alteration


ChemPhotoChem ◽  
2021 ◽  
Author(s):  
Paul De Bonfils ◽  
Elise Verron ◽  
Pierrick Nun ◽  
Vincent Coeffard

Sign in / Sign up

Export Citation Format

Share Document