confined fluid
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 6)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 570
Author(s):  
Anargyros S. Mavrakos ◽  
Dimitrios N. Konispoliatis ◽  
Dimitrios G. Ntouras ◽  
George P. Papadakis ◽  
Spyros A. Mavrakos

Moonpool-type floaters were initially proposed for applications such as artificial islands or as protecting barriers around a small area enabling work at the inner surface to be carried out in relatively calm water. In recent years, a growing interest on such structures has been noted, especially in relation to their use as heaving wave energy converters or as oscillating water column (OWC) devices for the extraction of energy from waves. Furthermore, in the offshore marine industry, several types of vessels are frequently constructed with moonpools. The present paper deals with the hydrodynamics of bottomless cylindrical bodies having vertical symmetry axis and floating in a water of finite depth. Two computation methods were implemented and compared: a theoretical approach solving analytically the corresponding diffraction problem around the moonpool floater and a computational fluid dynamics (CFD) solver, which considers the viscous effects near the sharp edges of the body (vortex shedding) as non-negligible. Two different moonpool-type configurations were examined, and some interesting phenomena were discussed concerning the viscous effects and irregularities caused by the resonance of the confined fluid.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mingqiang Chen ◽  
Qingping Li ◽  
Linsong Cheng ◽  
Xiukun Wang ◽  
Chaohui Lyu ◽  
...  

Understanding different fluids flow behavior confined in microscales has tremendous significance in the development of tight oil reservoirs. In this article, a novel semiempirical model for different confined fluid flow based on the concept of boundary layer thickness, caused by the fluid–solid interaction, is proposed. Micro-tube experiments are carried out to verify the novel model. After the validation, the viscosity effect on the flow rate and Poiseuille number considering the fluid–solid interaction is investigated. Furthermore, the novel model is incorporated into unstructured networks with anisotropy to study the viscosity effect on pore-scale flow in tight formations under the conditions of different displacement pressure gradients, different aspect ratios (ratio of the pore radius to the connecting throat radius), and different coordination numbers. Results show that the viscosity effect on the flow rate and Poiseuille number after considering the fluid–solid interaction induces a great deviation from that in conventional fluid flow. The absolute permeability is not only a parameter related to pore structures but also depends on fluid viscosity. The study provides an effective model for modeling different confined fluid flow in microscales and lays a good foundation for studying fluid flow in tight formations.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1308
Author(s):  
Jiaqi Jin ◽  
Shoeleh Assemi ◽  
Hassnain Asgar ◽  
Greeshma Gadikota ◽  
Thang Tran ◽  
...  

Halloysite is a unique 1:1 clay mineral frequently appearing with nanotubular morphology, and having surfaces of different polarity with interesting and important technological applications. HNTs can be consolidated naturally in the earth by pressure and thermal flows. In this study of natural consolidated HNTs, the strength and hardness of these materials were found to be dependent on the presence of impurities (gibbsite, alunite, quartz, and other silica minerals), which accounted for the increased stability of such samples. In the absence of impurities, the strength of consolidated HNTs was significantly lower. The first 3D mapping of the pore structure of natural consolidated HNT is provided. The contributions of the porosity within the nanotubes and between the nanotubes were delineated using a combination of non-invasive ultra-small and small-angle X-ray scattering (USAXS/SAXS) analyses, BET/BJH pore size analyses, and computed tomography studies. A total porosity of 40%, as determined by X-ray attenuation and He porosimetry, was found for the natural consolidated HNTs, of which about one-third was due to the inter-HNT porosity. Nano-X-ray computed tomography (nano-XCT) analyses also indicated that 76% of the inter-HNT pores were smaller than 150 nm in diameter. The intra-HNT pore size determined by combined USAXS/SAXS and BET/BJH was about 10 nm. This pore network information is essential for the utilization of natural consolidated HNTs as a model geomaterial to investigate the effects of surface characteristics on confined fluid flow.


Author(s):  
Jiaqi Jin ◽  
Chen-Luh Lin ◽  
Shoeleh Assemi ◽  
Jan D. Miller ◽  
Darryl P. Butt ◽  
...  

2021 ◽  
Author(s):  
Gang Yang

Abstract Unconvnetional reservoirs are predominantly consisted of nanoscale pores. The strong confinement effect within nanopores imposes significant deviations to the confined fluid phase behavior. Minimum miscibility pressure (MMP) in unconventional reservoirs, as a parameter highly related to the phase behavior of confined fluids, is inevitably affected by the nanoscale confinement. The objective of this work is to investigate the impact of nanoscale confinement on MMP of unconventional reservoir fluids and to recognize a reliable theoretical approach to determine the MMP values in unconventional reservoirs. A modified Peng-Robinson equation of state (PR EOS) applicable for confined fluid characterization is applied to perform the EOS simulation of the vanishing interfacial tension (VIT) experiments. The MMP of a binary mixture at bulk and 50 nm are obtained via the VIT simulation. Meanwhile, the multiple mixing cell (MMC) algorithm coupled with the modified PR EOS is applied to compute the MMP for the same binary system. Comparison of the calculated results to the experimental values recognize that the MMC approach has higher accuracy in determining the MMP of confined fluid systems. Moreover, this approach is then applied to predict the MMP values of both Bakken and Eagle Ford oil at different pore sizes with various injected gases. Results demonstrate that the nanoscale confinement causes drastic suppression to the MMP of unconventional reservoir fluids and the suppression rate increases with decreasing pore size. The drastic suppression of MMP is highly favorable for the miscible gas injection EOR in unconventional reservoirs.


2021 ◽  
Author(s):  
Gang Yang ◽  
Xiaoli Li

Abstract Minimum miscibility pressure (MMP), as a key parameter for the miscible gas injection enhanced oil recovery (EOR) in unconventional reservoirs, is affected by the dominance of nanoscale pores. The objective of this work is to investigate the impact of nanoscale confinement on MMP of CO2/hydrocarbon systems and to compare the accuracy of different theoretical approaches in calculating MMP of confined fluid systems. A modified PR EOS applicable for confined fluid characterization is applied to perform the EOS simulation of the vanishing interfacial tension (VIT) experiments. The MMP of multiple CO2/hydrocarbon systems at different pore sizes are obtained via the VIT simulations. Meanwhile, the multiple mixing cell (MMC) algorithm coupled with the same modified PR EOS is applied to compute the MMP for the same fluid systems. Comparison of these results to the experimental values recognize that the MMC approach has higher accuracy in determining the MMP of confined fluid systems. Moreover, nanoscale confinement results in the drastic suppression of MMP and the suppression rate increases with decreasing pore size. The drastic suppression of MMP is highly favorable for the miscible gas injection EOR in unconventional reservoirs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 165
Author(s):  
Olav Galteland ◽  
Dick Bedeaux ◽  
Signe Kjelstrup

We have described for the first time the thermodynamic state of a highly confined single-phase and single-component fluid in a slit pore using Hill’s thermodynamics of small systems. Hill’s theory has been named nanothermodynamics. We started by constructing an ensemble of slit pores for controlled temperature, volume, surface area, and chemical potential. We have presented the integral and differential properties according to Hill, and used them to define the disjoining pressure on the new basis. We identified all thermodynamic pressures by their mechanical counterparts in a consistent manner, and have given evidence that the identification holds true using molecular simulations. We computed the entropy and energy densities, and found in agreement with the literature, that the structures at the wall are of an energetic, not entropic nature. We have shown that the subdivision potential is unequal to zero for small wall surface areas. We have showed how Hill’s method can be used to find new Maxwell relations of a confined fluid, in addition to a scaling relation, which applies when the walls are far enough apart. By this expansion of nanothermodynamics, we have set the stage for further developments of the thermodynamics of confined fluids, a field that is central in nanotechnology.


Sign in / Sign up

Export Citation Format

Share Document