evidential reasoning approach
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 35)

H-INDEX

33
(FIVE YEARS 4)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 266
Author(s):  
Wenzhi Cao ◽  
Jilin Deng ◽  
Yi Yang ◽  
Yangyan Zeng ◽  
Limei Liu

The scientific and reasonable evaluation of the carrying capacity of water resources is of guiding significance for solving the issues of water resource shortages and pollution control. It is also an important method for realizing the sustainable development of water resources. Aiming at an evaluation of the carrying capacity of water resources, an evaluation model based on the cloud model theory and evidential reasoning approach is studied. First, based on the existing indicators, a water resources evaluation index system based on the pressure-state-response (PSR) model is constructed, and a classification method of carrying capacity grade is designed. The cloud model theory is used to realize the transformation between the measured value of indicators and the degree of correlation. Second, to obtain the weight of the evaluation index, the weight method of the index weights model based on the entropy weight method and evidential reasoning approach is proposed. Then, the reliability distribution function of the evaluation index and the graded probability distribution of the carrying capacity of water resources are obtained by an evidential reasoning approach. Finally, the evaluation method of the carrying capacity of water resources is constructed, and specific steps are provided. The proposed method is applied to the evaluation of water resources carrying capacity for Hunan Province, which verifies the feasibility and effectiveness of the method proposed in the present study. This paper applies this method of the evaluation of the water resources carrying capacity of Hunan Province from 2010 to 2019. It is concluded that the water resources carrying capacity of Hunan Province belongs to III~V, which is between the critical state and the strong carrying capacity state. The carrying capacity of the province’s water resources is basically on the rise. This shows that the carrying capacity of water resources in Hunan Province is in good condition, and corresponding protective measures should be taken to continue the current state.


2021 ◽  
pp. 1-19
Author(s):  
Wang Lina ◽  
Xu Zeshui

Risk management is a significant part of the success of a public-private partnership (PPP) project. There are four phrases for the process of risk management: Constructing a risk management environment, identifying risk factors, evaluating risk factors, and allocating risk factors. After identifying risk factors, it is imperative to analyze and evaluate critical risk factors, which can help participants formulate strategies to allocate risk factors, and thus alleviate the possible adverse results. The objectives of analyzing and evaluating risk factors focus on two aspects: The possibilities of risk occurrence and the degrees of risk loss. On behalf of determining the critical risk factors effectively, we take the probability degree and linguistic expressions into consideration to manifest experts’ perspectives. We consider critical risk factors in terms of the probability linguistic terms with weakened hedges from the evidential reasoning approach view. The linguistic terms with weakened hedges are applied to express the degree of risk risk loss, and the possibilities of risk occurrence collect from the probabilities of linguistic terms with weakened hedges. First, the commonality function and plausibility function are applied to correct the possibilities of risk occurrence for linguistic terms with weakened hedges. Next, we build a risk evaluation model from experts’ risk propensity and risk perceptions. Moreover, a case study of the risk analyzing and evaluating process of a PPP project is applied to illustrate the availability and effectiveness of the proposed model. We contrast the introduced model with other approaches. Finally, the advantages of this model intended to improve the linguistic terms with weakened hedges for the probabilistic linguistic terms with weakened hedges and evaluate risk factors considering the evidence reasoning approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Cuiping Yang ◽  
Chao Sun ◽  
Jilai Su ◽  
Wei He ◽  
Zhenhua Gao

In this paper, a new assessment method based on the interval evidential reasoning (IER) rule is proposed to solve the problem of physical and mechanical property assessment (PMPA) for particleboards. Because the detection data of the density and thickness swelling (TS) of particleboards are in an interval form, a model with precise values as input becomes inappropriate, so the PMPA of particleboards is not feasible. In the proposed method, expert knowledge and interval data are integrated to solve the assessment problem. First, the overall reliability of attributes is calculated, and the interval data are transformed into an interval belief structure. Then, the multiple interval belief structures are aggregated by ER nonlinear optimization models. Finally, the assessment results are obtained by utility theory. With the proposed method, the PMPA of particleboards with interval values can be assessed reasonably, and the combination interval belief degree of different grades of particleboard can be obtained, which has a certain guiding significance for the production and subsequent operation of enterprises. A case study for the PMPA of particleboards is conducted to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document