multifractal theory
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 23)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ling Zhao ◽  
Jiawei Ding ◽  
Haiming Liu

Abstract The multifractal theory is applied in an analysis of bridge disturbance signals with the aim of investigating their nonlinear characteristics, and then the recognisable fault features are extracted from them. By calculating the box dimension and correlation dimension of the bridge disturbance signal, the dimensional characteristics of the disturbance data are analysed to distinguish the health-state of the bridge. Finally, taking the bridge disturbance data as an example, and by using the multifractal spectrum analysis of the disturbance data, it is concluded that the multifractal method can accurately identify the fault state and realise the bridge health monitoring.


Author(s):  
Zhengkun Xue ◽  
Xiaolong Zhang ◽  
Xijin Yu ◽  
Xiaoguang Yu ◽  
Zihan Wang ◽  
...  

2021 ◽  
Author(s):  
Cao Jing ◽  
Sun Linhua ◽  
Wu Cancan

Abstract A more accurate method of DC processing data to distinguish the anomalous body is important for the prediction and detection of potential risk such as goaf and water inrush. In this paper, we have performed a DC data processing process, which relies on the theory of aggregation-area(C-A). We investigate the apparent resistant and apparent resistant isograms cumulative area as a function to search the threshold as the boundary value. Comparisons of the conventional data processing method to physical simulation that the C-A identified the higher resistance anomalous body better than the lower resistance because its sensitivity. Scoped the higher resistance area almost identical with the physical model, while the lower approach the nearest boundary. The results are in good agreement with the physical model, validating C-A multifractal theory as an effective way for DC accurate interpretation.


Author(s):  
Jordi Isern-Fontanet ◽  
Antonio Turiel

AbstractThe multifractal theory of turbulence is used to investigate the energy cascade in the Northwestern Atlantic ocean. The statistics of singularity exponents of horizontal velocity gradients computed from in situ measurements at 2 km resolution are used to characterize the anomalous scaling of the velocity structure functions at depths between 50 ad 500 m. Here, we show that the degree of anomalous scaling can be quantified using singularity exponents. Observations reveal, on one side, that the anomalous scaling has a linear dependence on the exponent characterizing the strongest velocity gradient and, on the other side, that the slope of this linear dependence decreases with depth. Since the observed distribution of exponents is asymmetric about the mode at all depths, we use an infinitely divisible asymmetric model of the energy cascade, the log-Poisson model, to derive the functional dependence of the anomalous scaling with the exponent of the strongest velocity gradient, as well as the dependence with dissipation. Using this model we can interpret the vertical change of the linear slope between the anomalous scaling and the exponents of the strongest velocity gradients as a change in the energy cascade. This interpretation assumes the validity of the multifractal theory of turbulence, which has been assessed in previous studies.


2021 ◽  
Vol 10 (5) ◽  
pp. 337
Author(s):  
Zilong Qin ◽  
Jinxin Wang ◽  
Yan Lu

Multifractal theory provides a reliable method for the scientific quantification of the geomorphological features of basins. However, most of the existing research has investigated small and medium-sized basins rather than complex and large basins. In this study, the Yellow River Basin and its sub-basins were selected as the research areas, and the generalized fractal dimension and multifractal spectrum were computed and analyzed with a multifractal technique based on the slope distribution probability. The results showed that the Yellow River Basin and its sub-basins exhibit clear multifractal characteristics, which indicates that the multifractal theory can be applied well to the analysis of large-scale basin geomorphological features. We also concluded that the region with the most uneven terrain is the Yellow River Downstream Basin with the “overhanging river”, followed by the Weihe River Basin, the Yellow River Mainstream Basin, and the Fenhe River Basin. Multifractal analysis can reflect the geomorphological feature information of the basins comprehensively with the generalized fractal dimension and the multifractal spectrum. There is a strong correlation between some common topographic parameters and multifractal parameters, and the correlation coefficients between them are greater than 0.8. The results provide a scientific basis for analyzing the geomorphic characteristics of large-scale basins and for the further research of the morphogenesis of the forms.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 754
Author(s):  
Maricel Agop ◽  
Tudor-Cristian Petrescu ◽  
Dumitru Filipeanu ◽  
Claudia Elena Grigoraș-Ichim ◽  
Ana Iolanda Voda ◽  
...  

In the framework of the Multifractal Theory of Motion, which is expressed by means of the multifractal hydrodynamic model, complex system dynamics are explained through uniform and non-uniform flow regimes of multifractal fluids. Thus, in the case of the uniform flow regime of the multifractal fluid, the dynamics’ description is “supported” only by the differentiable component of the velocity field, the non-differentiable component being null. In the case of the non-uniform flow regime of the multifractal fluid, the dynamics’ description is “supported” by both components of the velocity field, their ratio specifying correlations through homographic transformations. Since these transformations imply metric geometries explained, for example, by means of Killing–Cartan metrics of the SL(2R)-type algebra, of the set of 2 × 2 matrices with real elements, and because these metrics can be “produced” as Cayleyan metrics of absolute geometries, the dynamics’ description is reducible, based on a minimal principle, to harmonic mappings from the usual space to the hyperbolic space. Such a conjecture highlights not only various scenarios of dynamics’ evolution but also the types of interactions “responsible” for these scenarios. Since these types of interactions become fundamental in the self-structuring processes of polymeric-type materials, finally, the theoretical model is calibrated based on the author’s empirical data, which refer to controlled drug release applications.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 444
Author(s):  
Nicolae Dan Tesloianu ◽  
Lucian Dobreci ◽  
Vlad Ghizdovat ◽  
Andrei Zala ◽  
Adrian Valentin Cotirlet ◽  
...  

By assimilating biological systems, both structural and functional, into multifractal objects, their behavior can be described in the framework of the scale relativity theory, in any of its forms (standard form in Nottale’s sense and/or the form of the multifractal theory of motion). By operating in the context of the multifractal theory of motion, based on multifractalization through non-Markovian stochastic processes, the main results of Nottale’s theory can be generalized (specific momentum conservation laws, both at differentiable and non-differentiable resolution scales, specific momentum conservation law associated with the differentiable–non-differentiable scale transition, etc.). In such a context, all results are explicated through analyzing biological processes, such as acute arterial occlusions as scale transitions. Thus, we show through a biophysical multifractal model that the blocking of the lumen of a healthy artery can happen as a result of the “stopping effect” associated with the differentiable-non-differentiable scale transition. We consider that blood entities move on continuous but non-differentiable (multifractal) curves. We determine the biophysical parameters that characterize the blood flow as a Bingham-type rheological fluid through a normal arterial structure assimilated with a horizontal “pipe” with circular symmetry. Our model has been validated based on experimental clinical data.


2021 ◽  
Author(s):  
Arun Ramanathan ◽  
Pierre-Antoine Versini ◽  
Daniel Schertzer ◽  
Ioulia Tchiguirinskaia ◽  
Remi Perrin ◽  
...  

<p><strong>Abstract</strong></p><p>Hydrological applications such as flood design usually deal with and are driven by region-specific reference rainfall regulations, generally expressed as Intensity-Duration-Frequency (IDF) values. The meteorological module of hydro-meteorological models used in such applications should therefore be capable of simulating these reference rainfall scenarios. The multifractal cascade framework, since it incorporates physically realistic properties of rainfall processes such as non-homogeneity (intermittency), scale invariance, and extremal statistics, seems to be an appropriate choice for this purpose. Here we suggest a rather simple discrete-in-scale multifractal cascade based approach. Hourly rainfall time-series datasets (with lengths ranging from around 28 to 35 years) over six cities (Paris, Marseille, Strasbourg, Nantes, Lyon, and Lille) in France that are characterized by different climates and a six-minute rainfall time series dataset (with a length of around 15  years) over Paris were analyzed via spectral analysis and Trace Moment analysis to understand the scaling range over which the universal multifractal theory can be considered valid. Then the Double Trace Moment analysis was performed to estimate the universal multifractal parameters α,C<sub>1</sub> that are required by the multifractal cascade model for simulating rainfall. A renormalization technique that estimates suitable renormalization constants based on the IDF values of reference rainfall is used to simulate the reference rainfall scenarios. Although only purely temporal simulations are considered here, this approach could possibly be generalized to higher spatial dimensions as well.</p><p><strong>Keywords</strong></p><p>Multifractals, Non-linear geophysical systems, Cascade dynamics, Scaling, Hydrology, Stochastic rainfall simulations.</p>


Sign in / Sign up

Export Citation Format

Share Document