prairie pothole region
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 55)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Vol 13 (19) ◽  
pp. 3878
Author(s):  
Joshua Montgomery ◽  
Craig Mahoney ◽  
Brian Brisco ◽  
Lyle Boychuk ◽  
Danielle Cobbaert ◽  
...  

The Prairie Pothole Region (PPR) of North America is an extremely important habitat for a diverse range of wetland ecosystems that provide a wealth of socio-economic value. This paper describes the ecological characteristics and importance of PPR wetlands and the use of remote sensing for mapping and monitoring applications. While there are comprehensive reviews for wetland remote sensing in recent publications, there is no comprehensive review about the use of remote sensing in the PPR. First, the PPR is described, including the wetland classification systems that have been used, the water regimes that control the surface water and water levels, and the soil and vegetation characteristics of the region. The tools and techniques that have been used in the PPR for analyses of geospatial data for wetland applications are described. Field observations for ground truth data are critical for good validation and accuracy assessment of the many products that are produced. Wetland classification approaches are reviewed, including Decision Trees, Machine Learning, and object versus pixel-based approaches. A comprehensive description of the remote sensing systems and data that have been employed by various studies in the PPR is provided. A wide range of data can be used for various applications, including passive optical data like aerial photographs or satellite-based, Earth-observation data. Both airborne and spaceborne lidar studies are described. A detailed description of Synthetic Aperture RADAR (SAR) data and research are provided. The state of the art is the use of multi-source data to achieve higher accuracies and hybrid approaches. Digital Surface Models are also being incorporated in geospatial analyses to separate forest and shrub and emergent systems based on vegetation height. Remote sensing provides a cost-effective mechanism for mapping and monitoring PPR wetlands, especially with the logistical difficulties and cost of field-based methods. The wetland characteristics of the PPR dictate the need for high resolution in both time and space, which is increasingly possible with the numerous and increasing remote sensing systems available and the trend to open-source data and tools. The fusion of multi-source remote sensing data via state-of-the-art machine learning is recommended for wetland applications in the PPR. The use of such data promotes flexibility for sensor addition, subtraction, or substitution as a function of application needs and potential cost restrictions. This is important in the PPR because of the challenges related to the highly dynamic nature of this unique region.


2021 ◽  
Author(s):  
Jody Daniel ◽  
Rebecca Rooney ◽  
Derek Robinson

Abstract. Wetlands in the Prairie Pothole Region (PPR) are forecast to retract in their ranges due to climate change and potholes that typically contain ponded water year-round, which support a larger proportion of biological communities, are most sensitive to climate change. In addition to climate, land use activities and terrain also influence ponded water amounts in PPR wetlands. However, terrain is not typically included in models forecasting the impacts of climate change on PPR wetlands. Using a combination of variables representing climate, land cover and land use, and terrain, we predicted wetland permanence class in the southern Boreal, Parkland and Grassland of the Alberta PPR. We show that while climate is the strongest predictor of wetland permanence class in each Natural Region, topography was nearly as important in the Parkland and Southern Boreal.


Author(s):  
Brian A. Tangen ◽  
Sheel Bansal ◽  
Joanna R. Freeland ◽  
Steven E. Travis ◽  
Jennifer D. Wasko ◽  
...  

2021 ◽  
Author(s):  
Stefan Schlaffer ◽  
Marco Chini ◽  
Wouter Dorigo ◽  
Simon Plank

Abstract. The North American Prairie Pothole Region (PPR) represents a large system of wetlands with great importance for biodiversity, water storage and flood management. Knowledge of seasonal and inter-annual surface water dynamics in the PPR is important for understanding the functionality of these wetland ecosystems and the changing degree of hydrologic connectivity between them. Optical sensors have been widely used to calibrate and validate hydrological models of wetland dynamics. Yet, they are often limited by their temporal resolution and cloud cover, especially in the case of flood events. Synthetic aperture radar (SAR) sensors, such as the ones on board the Copernicus Sentinel-1 mission, can potentially overcome such limitations. However, water extent retrieval from SAR data is often affected by environmental factors, such as wind on water surfaces. Hence, for reliably monitoring water extent over longer time periods robust retrieval methods are required. The aim of this study was to develop a robust approach for classifying open water extent dynamics in the PPR and to analyse the obtained time series covering the entire available Sentinel-1 observation period from 2015 to 2020 in the light of ancillary data. Open water in prairie potholes was classified by fusing dual-polarised Sentinel-1 data and high-resolution topographical information using a Bayesian framework. The approach was tested for a study area in North Dakota. The resulting surface water maps were validated using high-resolution airborne optical imagery. For the observation period, the total water area, the number of water bodies and the median area per water body were computed. The validation of the retrieved water maps yielded producer’s accuracies between 84 % and 95 % for calm days and between 74 % and 88 % on windy days. User’s accuracies were above 98 % in all cases, indicating a very low occurrence of false positives due to the constraints introduced by topographical information. Surface water dynamics showed strong intra-annual dynamics especially in the case of small water bodies (< 1 ha). Water area and number of small water bodies decreased from spring throughout summer when evaporation rates in the PPR are typically high. Larger water bodies showed a more stable behaviour during most years. During the extremely wet period between the autumn of 2019 and mid-2020, however, the dynamics of both small and large water bodies changed markedly. While a larger number of small water bodies was encountered, which remained stable throughout the wet period, also the area of larger water bodies increased, partly due to merging of smaller adjacent water bodies. However, the area covered by small water bodies was more stable than the area covered by large water bodies. This suggests that large potholes released water faster via the drainage network, while small potholes released water mainly to the atmosphere via evaporation. The results demonstrate the potential of Sentinel-1 data for high-resolution monitoring of prairie wetlands. Limitations exist related to wind inhibiting correct water extent retrieval and due to the rather low temporal resolution of 12 days over the PPR.


Sign in / Sign up

Export Citation Format

Share Document