drought disaster
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 42)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 21 (3) ◽  
pp. 327-335
Author(s):  
XU YANG ◽  
XIAOHOU SHAO ◽  
XINYU MAO ◽  
XIUNENG LI ◽  
RONGQI LI

Drought is a worldwide concerned issue which causes huge losses in agriculture, economic and damages in natural ecosystems. The precise assessment of drought evolution characteristics is essential for agricultural water management and drought resistance, while such work is rarely reported. Thus, eight meteorological stations located within the Southwest Guizhou Autonomous Prefecture (SGAP) were selected, and the Standardized Precipitation Index (SPI) was used to assess the drought evolution characteristics. The results revealed that the drought occurrences number in Pu'an station was the largest (23 droughts), and the average drought duration in Xingren station was the longest (48.75 months). Moreover, the drought characteristics of the eight stations have account for the largest proportion under normal conditions, was more than 60%, the frequency of drought disaster occurring in Xingren is the highest (30.05%), followed by Wangmo (23.73%). The results of this study will provide theoretical guidance for drought resistance and agricultural production in Southwest Guizhou Autonomous Prefecture of China.


2021 ◽  
Vol 13 (20) ◽  
pp. 4084
Author(s):  
Sheng Yan ◽  
Jianyu Liu ◽  
Xihui Gu ◽  
Dongdong Kong

Runoff signatures (RS), a special set of runoff indexes reflecting the hydrological process, have an important influence on many fields of both human and natural systems by flooding, drought, and available water resources. However, the global RS changes and their causes remain largely unknown. Here, we make a comprehensive investigation of RS changes and their response to total water storage anomalies (TWSA) from GRACE satellites, atmospheric circulation, and reservoir construction by using daily runoff data from 21,955 hydrological stations during 1975–2017. The global assessment shows that (1) in recent years, the global extreme flow signatures tend to decrease, while the low and average flow signatures are likely to increase in more regions; (2) the spatial patterns of trends are similar for different RS, suggesting that the runoff distribution tends to entirely upward in some regions, while downward in other regions; (3) the trends in RS are largely consistent with that in TWSA over most regions in North America and eastern South America during 1979–2017, indicating that the GRACE-based TWSA have great potential in hydrological monitoring and attribution; (4) atmospheric circulation change could partly explain the global spatiotemporal variation patterns of RS; (5) dams have important influences on reducing the high flow signature in the catchments including dams built during 1975–2017. This study provides a full picture of RS changes and their possible causes, which has important implications for water resources management and flood and drought disaster assessment.


2021 ◽  
Vol 6 (3) ◽  
pp. 216
Author(s):  
Al Hussein Flowers Rizqi ◽  
Oky Sugarbo

The presence of surface water is always being a primary issue in Gunung Kidul regency. An aquifer investigation would support groundwater exploration. The research area is located in Tambakromo village, Ponjong subdistrict, Gunung Kidul Regency, Daerah Istimewa Yogyakarta Province. The aim of this research is about geological and subsurface conditions based on geological data and geoelectrical resistivity methods. By resistivity value interpretation, the position, depth, and thickness of aquifer could be determined. The purpose of this research is to identification of geological conditions that supported being aquifer rock. The method in this research is used geological mapping combined with petrographic analysis. The geophysics method is used to identification of aquifer in research area. Three locations were selected to acquisition geoelectrical resistivity survey. In Grogol village, there is no aquifer based on resistivity values of more than 10000 ohmmeters (andesitic breccia). An akuifuge is interpreted there in andesitic breccia instead of the presence of aquifer. The tuffaceous is interpreted as lapillistone that contained the glass with resistivity value of 43.63 and 340.11 ohmmeters. The Garon and Sumberejo village have aquifer at depth of 50 to 80 meters with a thickness of 13 to 70 meters. The type of aquifer in both area is included an unconfined aquifer, specifically located in between the limestone rock layer and andesitic breccia. By regional stratigraphic correlation, tuffaceous lapillistone is interpreted as derived from Semilir Formation. In addition, the presence of aquifer in research area could recommend for local people and government to reduce the drought disaster.


Author(s):  
Hugh D. Cole ◽  
Megan J. Cole ◽  
Kayleen J. Simpson ◽  
Nicholas P. Simpson ◽  
Gina Ziervogel ◽  
...  

2021 ◽  
Vol 193 (7) ◽  
Author(s):  
Zhenghua Hu ◽  
Zhurong Wu ◽  
Yixuan Zhang ◽  
Qi Li ◽  
A. R. M. Towfiqul Islam ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 4132
Author(s):  
Israel Ropo Orimoloye ◽  
Leocadia Zhou ◽  
Ahmed M. Kalumba

Ecosystem services refer to the direct and indirect benefits to humanity from an ecosystem. The ability to spatially incorporate multiple biophysical environments is crucial to ecosystem services, thus promoting cooperation between science and policy in seeking solutions to global challenges, including drought disasters. Therefore, understanding ecosystem services, for instance, from forest/vegetation in view of contributing to drought disaster risk adaptation is critical to human-nature interactions and proper sustainable conservation thereof. No known study has been done on ecosystem services and their contributions to drought management or other climate adaptation in South Africa. This study aimed at quantifying drought disaster risk adaptation based on ecosystem services in South Africa. It was identified that ecosystem services to society have been directly affected by anthropogenic and natural phenomena, thereby influencing drought severity and its impacts. These impacts and their associated risks are evident globally, including in South Africa. We found out that ecosystems in South Africa have been affected and extremely vulnerable to recurrent natural disasters, such as droughts. To achieve long-term solutions to such drought-related risks and challenges, feedback mechanisms between human-natural and related factors and ecosystem services-based drought adaptation need to be understood and planned. Timely spatiotemporal assessment, planning and management strategies need to be considered to find solutions or ways forward to South Africa in combating drought disasters.


Sign in / Sign up

Export Citation Format

Share Document