diagonalization method
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 21)

H-INDEX

23
(FIVE YEARS 1)

Author(s):  
Ricardo Macías-Quijas ◽  
Ramiro Velázquez ◽  
Roberto De Fazio ◽  
Paolo Visconti ◽  
Nicola Ivan Giannoccaro ◽  
...  

This paper introduces a compact, affordable electronic nose (e-nose) device devoted to detect the presence of toxic compounds that could affect human health, such as carbon monoxide, combustible gas, hydrogen, methane, and smoke, among others. Such artificial olfaction device consists of an array of six metal oxide semiconductor (MOS) sensors and a computer-based information system for signal acquisition, processing, and visualization. This study further proposes the use of the filter diagonalization method (FDM) to extract the spectral contents of the signals obtained from the sensors. Preliminary results show that the prototype is functional and that the FDM approach is suitable for a later classification stage. Example deployment scenarios of the proposed e-nose include indoor facilities (buildings and warehouses), compromised air quality places (mines and sanitary landfills), public transportation, mobile robots, and wireless sensor networks.


2022 ◽  
Author(s):  
Emre Bahadir Al ◽  
Huseyin Sari ◽  
Serpil Sakiroglu ◽  
İsmail Sokmen

Abstract In this work, we have performed a theoretically study on the energy spectrum, binding energy and intersubband optical absorption of a D2+ complex confined in a spherical quantum dot with finite confinement potential by using diagonalization method within the effective mass approximation. We analyzed the effect of the quantum dot size and internuclear distance on the binding energy, equilibrium distance and optical response of the singly ionized double donor complex. Theoretical analysis of the D2+ system indicated that the internuclear distance significantly affects the energy difference between the two lowest-lying electron states and amplitude of the optical absorption. In general, we conclude that the internuclear distance and quantum dot size dependence of the low-lying energy spectrum of the D2+ complex in a quantum dot favors the describing of an appropriate two-level system needed for quantum computation.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jeong Ryeol Choi ◽  
Salah Menouar

We investigate quantum features of three coupled dissipative nano-optomechanical oscillators. The Hamiltonian of the system is somewhat complicated due not only to the coupling of the optomechanical oscillators but to the dissipation in the system as well. In order to simplify the problem, a spatial unitary transformation approach and a matrix-diagonalization method are used. From such procedures, the Hamiltonian is eventually diagonalized. In other words, the complicated original Hamiltonian is transformed to a simple one which is associated to three independent simple harmonic oscillators. By utilizing such a simplification of the Hamiltonian, complete solutions (wave functions) of the Schrödinger equation for the optomechanical system are obtained. We confirm that the probability density converges to the origin of the coordinate in a symmetric manner as the optomechanical energy dissipates. The wave functions that we have derived can be used as a basic tool for evaluating diverse quantum consequences of the system, such as quadrature fluctuations, entanglement entropy, energy evolution, transition probability, and the Wigner function.


2021 ◽  
Author(s):  
E. B. Al ◽  
E. Kasapoglu ◽  
H. Sari ◽  
I. Sökmen ◽  
C. A. Duque

Abstract In this study, the electronic and optical properties of single or core/shell quantum dots, which are formed depending on the parameters in the selected Konwent potential, are investigated. Namely, the effects of the size and geometric shapes of quantum dots on the binding energy of the on-center donor impurity, the total absorption coefficient and refractive index which are including transitions between the some confined states, and the electromagnetically induced transparency between the lowest six confined states related to the donor impurity are investigated. We have used the diagonalization method by choosing a wave function based on the Bessel and Spherical Harmonics orthonormal function to find the eigenvalues and eigenfunctions of the electron confined within the quantum dots which have different types mentioned above. To calculate the optical absorption coefficients and electromagnetically induced transparency related to shallow-donor impurity, a two- and three-level approach in the density matrix expansion is used, respectively.


2021 ◽  
Vol 5 (12) ◽  
pp. 125008
Author(s):  
Rito Furuchi ◽  
Hiroki Nakano ◽  
Norikazu Todoroki ◽  
Toru Sakai

Abstract We study the S = 1/2 Heisenberg antiferromagnet on the floret pentagonal lattice by numerical diagonalization method. This system shows various behaviours that are different from that of the Cairo-pentagonal-lattice antiferromagnet. The ground-state energy without magnetic field and the magnetization process of this system are reported. Magnetization plateaux appear at one-ninth height of the saturation magnetization, at one-third height, and at seven-ninth height. The magnetization plateaux at one-third and seven-ninth heights come from interactions linking the sixfold-coordinated spin sites. A magnetization jump appears from the plateau at one-ninth height to the plateau at one-third height. Another magnetization jump is observed between the heights corresponding to the one-third and seven-ninth plateaux; however the jump is away from the two plateaux, namely, the jump is not accompanied with any magnetization plateaux. The jump is a peculiar phenomenon that has not been reported.


2021 ◽  
Author(s):  
Emre Bahadir AL

Abstract In this study, linear, nonlinear and total optical absorption coefficients related a single shallow donor atom confined in semiconductor core/shell/shell quantum dot heterostructure are researched in detail within the compact density matrix formalism approximation. For this purpose, firstly, the energies and the wavefunctions are computed by the diagonalization method in the effective mass approach. Moreover, the effects of size modulation, donor position and magnetic field are analyzed. The numerical results indicate that the linear and nonlinear parts of the absorption coefficients related with intersubband 1s-1p and 1p-1d donor transitions undergo significant changes.


2021 ◽  
Vol 9 (3) ◽  
pp. 312-327
Author(s):  
Grover E. C. Guzman ◽  
Peter F. Stadler ◽  
André Fujita

AbstractThe network Laplacian spectral density calculation is critical in many fields, including physics, chemistry, statistics, and mathematics. It is highly computationally intensive, limiting the analysis to small networks. Therefore, we present two efficient alternatives: one based on the network’s edges and another on the degrees. The former gives the exact spectral density of locally tree-like networks but requires iterative edge-based message-passing equations. In contrast, the latter obtains an approximation of the spectral density using only the degree distribution. The computational complexities are 𝒪(|E|log(n)) and 𝒪(n), respectively, in contrast to 𝒪(n3) of the diagonalization method, where n is the number of vertices and |E| is the number of edges.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1014
Author(s):  
Eman A. N. Al-Lehaibi

This study is the first to use the diagonalization method for the new modelling of a homogeneous, thermoelastic, and isotropic solid sphere that has been subjected to mechanical damage. The fundamental equations were derived using the hyperbolic two-temperature generalized thermoelasticity theory with mechanical damage taken into account. The outer surface of the sphere has been assumed to have been shocked thermally without cubical dilatation. The numerical results for the dynamical and conductive temperatures increment, strain, displacement, and average of the principal stresses components have been represented graphically with different values of the hyperbolic two-temperature parameter and mechanical damage parameters. The two-temperature model parameter and the mechanical damage parameter have significant effects. The propagations of the thermomechanical waves take place at finite speeds in the context of the hyperbolic two-temperature theory as well as in the usual context of the Lord–Shulman theory with one-temperature.


2021 ◽  
Vol 14 (3) ◽  
pp. 231-238

Abstract: The exact diagonalization method has been used to solve the effective-mass Hamiltonian of a single electron confined parabolically in the GaAs/AlGaAs quantum heterostructure, in the presence of a donor impurity and under the effect of an applied uniform magnetic field. The donor impurity is located at distance (d) along the growth direction which is perpendicular to the motion of the electron in a two-dimensional heterostructure layer. We have investigated the dependence of the magnetization (M) and magnetic susceptibility (χ) of a GaAs/AlGaAs quantum heterostructure nanomaterial on the magnetic field strength (ω_c), confining frequency (ω_o), donor impurity position (d), pressure (P) and temperature (T). Keywords: Exact diagonalization, Donor impurity, Magnetic field, Magnetization, Magnetic susceptibility, Pressure and temperature.


2021 ◽  
Vol 140 (6) ◽  
Author(s):  
D. O. Kashinski ◽  
J. Bohnemann ◽  
A. P. Hickman ◽  
D. Talbi

AbstractWe present a diabatic representation of the potential energy curves (PECs) for the $$^4{{\Pi}} $$ 4 Π states of $$\mathrm {SH}$$ SH . Multireference, configuration interaction (MRCI) calculations were used to determine high-accuracy adiabatic PECs of both $$\mathrm {SH}$$ SH and $${\mathrm {SH}}^+$$ SH + from which the diabatic representation is constructed for $$\mathrm {SH}$$ SH . The adiabatic PECs exhibit many avoided crossings due to strong Rydberg-valence mixing. We employ the block diagonalization method, an orthonormal rotation of the adiabatic Hamiltonian, to disentangle the valence autoionizing and Rydberg $$^4\Pi $$ 4 Π states of $$\mathrm {SH}$$ SH by constructing a diabatic Hamiltonian. The diagonal elements of the diabatic Hamiltonian matrix at each nuclear geometry render the diabatic PECs and the off-diagonal elements are related to the state-to-state coupling. Care is taken to assure smooth variation and consistency of chemically significant molecular orbitals across the entire geometry domain.


Sign in / Sign up

Export Citation Format

Share Document