field approximation
Recently Published Documents


TOTAL DOCUMENTS

1669
(FIVE YEARS 246)

H-INDEX

64
(FIVE YEARS 7)

Author(s):  
Xiankai Pang

We show that the accelerating expansion phase of the universe can emerge from the group field theory formalism, a candidate theory of quantum gravity. The cosmological evolution can be extracted from condensate states using mean field approximation, in a form of modified FLRW equations. By introducing an effective equation of state w, we can reveal the relevant features of the evolution, and show that with proper choice of parameters, w will approach to −1, corresponds to the behaviour of cosmological constant, results in a late time acceleration and leads to de Sitter spacetime asymptotically.


Author(s):  
Elias Andre Starchl ◽  
Helmut Ritsch

Abstract Quantum annealing aims at finding optimal solutions to complex optimization problems using a suitable quantum many body Hamiltonian encoding the solution in its ground state. To find the solution one typically evolves the ground state of a soluble, simple initial Hamiltonian adiabatically to the ground state of the designated final Hamiltonian. Here we explore whether and when a full quantum representation of the dynamics leads to higher probability to end up in the desired ground when compared to a classical mean field approximation. As simple but nontrivial example we target the ground state of interacting bosons trapped in a tight binding lattice with small local defect by turning on long range interactions. Already two atoms in four sites interacting via two cavity modes prove complex enough to exhibit significant differences between the full quantum model and a mean field approximation for the cavity fields mediating the interactions. We find a large parameter region of highly successful quantum annealing, where the semi-classical approach largely fails. Here we see strong evidence for the importance of entanglement to end close to the optimal solution. The quantum model also reduces the minimal time for a high target occupation probability. Surprisingly, in contrast to naive expectations that enlarging the Hilbert space is beneficial, different numerical cut-offs of the Hilbert space reveal an improved performance for lower cut-offs, i.e. an nonphysical reduced Hilbert space, for short simulation times. Hence a less faithful representation of the full quantum dynamics sometimes creates a higher numerical success probability in even shorter time. However, a sufficiently high cut-off proves relevant to obtain near perfect fidelity for long simulations times in a single run. Overall our results exhibit a clear improvement to find the optimal solution based on a quantum model versus simulations based on a classical field approximation.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 73
Author(s):  
Branko Dragovich

In this paper, we introduce a new type of matter that has origin in p-adic strings, i.e., strings with a p-adic worldsheet. We investigate some properties of this p-adic matter, in particular its cosmological aspects. We start with crossing symmetric scattering amplitudes for p-adic open strings and related effective nonlocal and nonlinear Lagrangian which describes tachyon dynamics at the tree level. Then, we make a slight modification of this Lagrangian and obtain a new Lagrangian for non-tachyonic scalar field. Using this new Lagrangian in the weak field approximation as a matter in Einstein gravity with the cosmological constant, one obtains an exponentially expanding FLRW closed universe. At the end, we discuss the obtained results, i.e., computed mass of the scalar p-adic particle, estimated radius of related closed universe and noted p-adic matter as a possible candidate for dark matter.


Author(s):  
V. V. Rusakov ◽  
Y. L. Raikher

A model is developed to describe the oscillations of optical anisotropy induced in a viscoelastic ferrocolloid (nanodispersion of magnetic particles) by an AC magnetic field. The viscoelasticity of the matrix (carrier medium) is assumed to obey the Jeffreys rheological scheme, whose advantage is that with the aid of just two viscous parameters and a single one for elasticity it enables one to vary the retarded mechanical response of the carrier from a weakly Maxwellian fluid to a medium with the rheology of a Kelvin gel. As the orientational motion of the particles driven by the AC field is always strongly affected by thermal motion, the occurring process is described with the aid of a kinetic (Fokker–Planck type) equation that combines diffusional and drift terms. On this basis, an exact evolution equation for the macroscopic optical anisotropy of a ferrocolloid is derived that is, however, just one link in an infinite chain of equations for statistical moments. The solution is obtained by applying effective field approximation: reducing the number of moment equations to their minimum and closing the chosen set. This solution is substituted to the scheme of a standard polarimetric set-up, and it is demonstrated how the peculiarities imparted by viscoelasticity should manifest themselves on the intensity of the light transmitted through the set up containing a ferrocolloid sample. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


2022 ◽  
Vol 258 ◽  
pp. 05002
Author(s):  
Andreas Ipp ◽  
David I. Müller ◽  
Daniel Schuh

In these proceedings, we report on our numerical lattice simulations of partons traversing the boost-invariant, non-perturbative glasma as created at the early stages of collisions at RHIC and LHC. Since these highly energetic partons are produced from hard scatterings during heavy-ion collisions, they are already affected by the first stage of the medium's time evolution, the glasma, which is the pre-equilibrium precursor state of the quark-gluon plasma. We find that partons quickly accumulate transverse momentum up to the saturation momentum during the glasma stage. Moreover, we observe an interesting anisotropy in transverse momentum broadening of partons with larger broadening in the rapidity than in the azimuthal direction. Its origin can be related to correlations among the longitudinal color-electric and color-magnetic flux tubes in the initial state of the glasma. We compare these observations to the semi-analytic results obtained by a weak-field approximation, where we also find such an anisotropy in a parton's transverse momentum broadening.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Vasilis K. Oikonomou

Neutron stars are perfect candidates to investigate the effects of a modified gravity theory, since the curvature effects are significant and more importantly, potentially testable. In most cases studied in the literature in the context of massive scalar-tensor theories, inflationary models were examined. The most important of scalar-tensor models is the Higgs model, which, depending on the values of the scalar field, can be approximated by different scalar potentials, one of which is the inflationary. Since it is not certain how large the values of the scalar field will be at the near vicinity and inside a neutron star, in this work we will answer the question, which potential form of the Higgs model is more appropriate in order for it to describe consistently a static neutron star. As we will show numerically, the non-inflationary Higgs potential, which is valid for certain values of the scalar field in the Jordan frame, leads to extremely large maximum neutron star masses; however, the model is not self-consistent, because the scalar field approximation used for the derivation of the potential, is violated both at the center and at the surface of the star. These results shows the uniqueness of the inflationary Higgs potential, since it is the only approximation for the Higgs model, that provides self-consistent results.


Author(s):  
Laurin Pannullo ◽  
Marc Wagner ◽  
Marc Winstel

We study the μ-μ45-T phase diagram of the 2+1-dimensional Gross-Neveu model, where μ denotes the ordinary chemical potential, μ45 the chiral chemical potential and T the temperature. We use the mean-field approximation and two different lattice regularizations with naive chiral fermions. An inhomogeneous phase at finite lattice spacing is found for one of the two regularizations. Our results suggest that there is no inhomogeneous phase in the continuum limit. We show that a chiral chemical potential is equivalent to an isospin chemical potential. Thus, all results presented in this work can also be interpreted in the context of isospin imbalance.


Author(s):  
Zhen Wang ◽  
Anbang Sun ◽  
Jannis Teunissen

Abstract Both fluid and particle models are commonly used to simulate streamer discharges. In this paper, we quantitatively study the agreement between these approaches for axisymmetric and 3D simulations of positive streamers in air. We use a drift-diffusion-reaction fluid model with the local field approximation and a PIC-MCC (particle-in-cell, Monte Carlo collision) particle model. The simulations are performed at 300 K and 1 bar in a 10 mm plate-plate gap with a 2 mm needle electrode. Applied voltages between 11.7 and 15.6 kV are used, which correspond to background fields of about 15 to 20 kV/cm. Streamer properties like maximal electric field, head position and velocity are compared as a function of time or space. Our results show good agreement between the particle and fluid simulations, in contrast to some earlier comparisons that were carried out in 1D or for negative streamers. To quantify discrepancies between the models, we mainly look at streamer velocities as a function of streamer length. For the test cases considered here, the mean deviation in streamer velocity between the particle and fluid simulations is less than 4\%. We study the effect of different types of transport data for the fluid model, and find that flux coefficients lead to good agreement whereas bulk coefficients do not. Furthermore, we find that with a two-term Boltzmann solver, data should be computed using a temporal growth model for the best agreement. The numerical convergence of the particle and fluid models is also studied. In fluid simulations the streamer velocity increases somewhat using finer grids, whereas the particle simulations are less sensitive to the grid. Photoionization is the dominant source of stochastic fluctuations in our simulations. When the same stochastic photoionization model is used, particle and fluid simulations exhibit similar fluctuations.


Author(s):  
Vinod Janardhanan

Abstract Solid oxide cells (SOC) are ideal candidates for the electrochemical conversion of H2O and CO2 into H2 and CO using renewable sources. This work develops different electrochemical models for the reduction of H2O and CO2 based on elementary step kinetics and discriminates them based on their ability to predict experimentally measured cell performances. The thermo-catalytic chemistry is represented using a micro kinetic model, which is coupled to the electrochemical model through the surface coverage terms. A one dimensional representation of SOC resolving the cell across the thickness of the electrodes is used for simulations. The source terms for the species transport equations are calculated using the micro kinetic model by applying mean field approximation. The discussion in the paper covers aspects related to parameter fitting, model development, solution methodology, model discrimination and identification of rate limiting step.


2021 ◽  
Author(s):  
Jonas Landsgesell ◽  
David Beyer ◽  
Pascal Hebbeker ◽  
Peter Košovan ◽  
Christian Holm

The swelling of polyelectrolyte hydrogels has been often explained using simple models derived from the Flory-Rehner model. While these models qualitatively predict the experimentally observed trends, they also introduce strong approximations and neglect some important contributions. Consequently, they sometimes incorrectly ascribe the observed trends to contributions which are of minor importance under the given conditions. In this work, we investigate the swelling properties of weak (pH-responsive) polyelectrolyte gels at various pH and salt concentrations, using a hierarchy of models, gradually introducing various approximations. For the first time, we introduce a three-dimensional particle-based model which accounts for the topology of the hydrogel network, for electrostatic interactions between gel segments and small ions and for acid-base equilibrium coupled to the Donnan partitioning of small ions. This model is the most accurate one, therefore, we use it as a reference when assessing the effect of various approximations. As the first approximation, we introduce the affine deformation, which allows us to replace the network of many chains by a single chain, while retaining the particle-based representation. In the next step, we use the mean-field approximation to replace particles by density fields, combining the Poisson-Boltzmann equation with elastic stretching of the chain. Finally, we introduce an ideal gel model by neglecting the electrostatics while retaining all other features of the previous model. Comparing predictions from all four models allows us to understand which contributions dominate at high or low pH or salt concentrations. We observe that the field-based models overestimate the ionization degree of the gel because they underestimate the electrostatic interactions. Nevertheless, a cancellation of effects on the electrostatic interactions and Donnan partitioning causes that both particle-based and field-based models consistently predict the swelling of the gels as a function of pH and salt concentration. Thus, we can conclude that any of the employed models can rationalize the known experimental trends in gel swelling, however, only the particle-based models fully account for the true effects causing these trends. The full understanding of differences between various models is important when interpreting experimental results in the framework of existing theories and for ascribing the observed trends to particular contributions, such as the Donnan partitioning of ions, osmotic pressure or electrostatic interactions.


Sign in / Sign up

Export Citation Format

Share Document