column bioreactor
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 25)

H-INDEX

22
(FIVE YEARS 4)

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2064
Author(s):  
George Prasoulas ◽  
Konstantinos Dimos ◽  
Panayiotis Glekas ◽  
Styliani Kalantzi ◽  
Stamatis Sarris ◽  
...  

Biodesulfurization (BDS) is considered a complementary technology to the traditional hydrodesulfurization treatment for the removal of recalcitrant sulfur compounds from petroleum products. BDS was investigated in a bubble column bioreactor using two-phase media. The effects of various process parameters, such as biocatalyst age and concentration, organic fraction percentage (OFP), and type of sulfur compound—namely, dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT), and 4,6-diethyldibenzothiophene (4,6-DEDBT)—were evaluated, using resting cells of Rhodococcus erythropolis IGTS8. Cells derived from the beginning of the exponential growth phase of the bacterium exhibited the highest biodesulfurization efficiency and rate. The biocatalyst performed better in an OFP of 50% v/v. The extent of DBT desulfurization was dependent on cell concentration, with the desulfurization rate reaching its maximum at intermediate cell concentrations. A new semi-empirical model for the biphasic BDS was developed, based on the overall Michaelis-Menten kinetics and taking into consideration the deactivation of the biocatalyst over time, as well as the underlying mass transfer phenomena. The model fitted experimental data on DBT consumption and 2-hydroxibyphenyl (2-HBP) accumulation in the organic phase for various initial DBT concentrations and different organosulfur compounds. For constant OFP and biocatalyst concentration, the most important parameter that affects BDS efficiency seems to be biocatalyst deactivation, while the phenomenon is controlled by the affinities of biodesulfurizing enzymes for the different organosulfur compounds. Thus, desulfurization efficiency decreased with increasing initial DBT concentration, and in inverse proportion to increases in the carbon number of alkyl substituent groups.


Author(s):  
Chunye Xue ◽  
Kun Gao ◽  
Pingkang Qian ◽  
Jingwei Dong ◽  
Zheng Gao ◽  
...  

Abstract Previous studies documented that Chlorella sorokiniana could grow well on cooking cocoon wastewater (CCW) with a maximum biomass of 0.49 g/L. In order to further enhance the biomass production and nutrient removals, a bubble-column bioreactor was designed and performed to cultivate C. sorokiniana in CCW, and two main cultivation parameters were investigated in this work. Results showed that a maximum algal biomass, specific growth rate, and biomass productivity of 2.83 g/L, 0.854 d−1, and 476.25 g/L/d, respectively, were achieved when this alga was cultivated in the bioreactor with an initial cell density of 0.8 g/L and an aeration rate of 3.34 L air/L culture/min; meanwhile, removal efficiencies of ammonium, total nitrogen, total phosphorus, and chemical oxygen demand reached 97.96, 85.66, 97.96, and 86.43%, respectively, which were significantly higher than that obtained in our previous studies. Moreover, chemical compositions in the algal cells varied with the changes of cultivation conditions (i.e., initial cell density and aeration rate). Thus, it is concluded that (1) the bubble-column bioreactor was suitable for cultivation of C. sorokiniana coupled with the CCW treatment; and (2) initial cell density and aeration rate affected the biomass production, nutrient removals and chemical compositions of this alga.


Author(s):  
Asifa Farooqi ◽  
Ghufranud Din ◽  
Rameesha Hayat ◽  
Malik Badshah ◽  
Samiullah Khan ◽  
...  

Abstract The environmental release of Mercury is continuously increasing with high degree of mobility, transformation and amplified toxicity. Improving remediation strategies is becoming increasingly important to achieve more stringent environmental safety standards. This study develops a lab-scale reactor for bioremediation of aqueous mercury using a biofilm producing bacterial strain, KBH10 isolated from mercury polluted soil. The strain was found resistant to 80 mg/L of HgCl2 and identified as Bacillus nealsonii via 16S rRNA gene sequence analysis. The strain KBH10 was characterized for optimum growth parameters and its mercury biotransformation potential was validated through mercuric reductase assay. A packed-bed column bioreactor was designed for biofilm-mediated mercury removal from artificially contaminated water and residual mercury was estimated. Strain KBH10 could grow at a range of temperature (20–50 °C) and pH (6.0–9.0) with optimum temperature established at 30 °C and pH 7.0. The optimum mercuric reductase activity (77.8 ± 1.7 U/mg) was reported at 30 °C and was stable at a temperature range of 20–50 °C. The residual mercury analysis of artificially contaminated water indicated 60.6 ± 1.5% reduction in mercury content within 5 h of exposure. This regenerative process of biofilm-mediated mercury removal in a packed-bed column bioreactor can provide new insight of its potential use in mercury bioremediation.


Author(s):  
Benjaporn Sriputorn ◽  
Pattana Laopaiboon ◽  
Niphaphat Phukoetphim ◽  
Nawapol Uppatcha ◽  
Witchuta Phuphalai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document