clock stability
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 163 (2) ◽  
pp. 65
Author(s):  
T. Cassanelli ◽  
Calvin Leung ◽  
M. Rahman ◽  
K. Vanderlinde ◽  
J. Mena-Parra ◽  
...  

Abstract The Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB experiment has detected thousands of fast radio bursts (FRBs) due to its sensitivity and wide field of view; however, its low angular resolution prevents it from localizing events to their host galaxies. Very long baseline interferometry (VLBI), triggered by FRB detections from CHIME/FRB will solve the challenge of localization for non-repeating events. Using a refurbished 10 m radio dish at the Algonquin Radio Observatory located in Ontario Canada, we developed a testbed for a VLBI experiment with a theoretical λ/D ≲ 30 mas. We provide an overview of the 10 m system and describe its refurbishment, the data acquisition, and a procedure for fringe fitting that simultaneously estimates the geometric delay used for localization and the dispersive delay from the ionosphere. Using single pulses from the Crab pulsar, we validate the system and localization procedure, and analyze the clock stability between sites, which is critical for coherently delay referencing an FRB event. We find a localization of ∼200 mas is possible with the performance of the current system (single-baseline). Furthermore, for sources with insufficient signal or restricted wideband to simultaneously measure both geometric and ionospheric delays, we show that the differential ionospheric contribution between the two sites must be measured to a precision of 1 × 10−8 pc cm−3 to provide a reasonable localization from a detection in the 400–800 MHz band. Finally we show detection of an FRB observed simultaneously in the CHIME and the Algonquin 10 m telescope, the first non-repeating FRB in this long baseline. This project serves as a testbed for the forthcoming CHIME/FRB Outriggers project.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marius Schulte ◽  
Christian Lisdat ◽  
Piet O. Schmidt ◽  
Uwe Sterr ◽  
Klemens Hammerer

AbstractOptical atomic clocks are a driving force for precision measurements due to the high accuracy and stability demonstrated in recent years. While further improvements to the stability have been envisioned by using entangled atoms, squeezing the quantum mechanical projection noise, evaluating the overall gain must incorporate essential features of an atomic clock. Here, we investigate the benefits of spin squeezed states for clocks operated with typical Brownian frequency noise-limited laser sources. Based on an analytic model of the closed servo-loop of an optical atomic clock, we report here quantitative predictions on the optimal clock stability for a given dead time and laser noise. Our analytic predictions are in good agreement with numerical simulations of the closed servo-loop. We find that for usual cyclic Ramsey interrogation of single atomic ensembles with dead time, even with the current most stable lasers spin squeezing can only improve the clock stability for ensembles below a critical atom number of about one thousand in an optical Sr lattice clock. Even with a future improvement of the laser performance by one order of magnitude the critical atom number still remains below 100,000. In contrast, clocks based on smaller, non-scalable ensembles, such as ion clocks, can already benefit from squeezed states with current clock lasers.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2622
Author(s):  
Xiangbo Zhang ◽  
Ji Guo ◽  
Yonghui Hu ◽  
Dangli Zhao ◽  
Zaimin He

Time and frequency transfer through global navigation satellite system (GNSS) precise point positioning (PPP) based on carrier-phase measurements has been widely used for clock comparisons in national timing laboratories. However, the time jumps up to one nanosecond at the day boundary epochs of adjacent daily batches lead to discontinuities in the time transfer results. Therefore, it is a major obstacle to achieve continuous carrier phase time transfer. The day-boundary discontinuities have been studied for many years, and they are believed to be caused by the long-term pseudorange noise during estimation of the clock offset in the daily batches and are nearly in accordance with a Gaussian curve. Several methods of eliminating the day-boundary discontinuity were proposed during the past fifteen years, such as shift and overlapping, longer batch processing, clock handover, and ambiguity stacking. Some errors and new noise limit the use of such methods in the long-term clock stability comparison. One of the effective methods is phase ambiguity fixing resolution in zero-differenced PPP, which is based on the precise products of wide-lane satellite bias (WSB) provided by the new international GNSS Service (IGS) Analysis Center of Centre National d’Etudes Spatiales (CNES) and Collecte Localisation Satellites (CLS). However, it is not suitable for new GNSS, such as the Beidou Satellite System (BDS), GALILEO, and QZSS. For overcoming the drawbacks above, Multi-GNSS Experiment (MGEX) observation data of 10 whole days from MJD 58624 to 58633have been network processed by batch least square resolution. These observations come from several ground receivers located in different national timing laboratories. Code and carrier phase ionosphere-free measurements of GPS and BDS satellites are used, and the time transfer results from network processing are compared with PPP results provided by Bureau International des Poids et Mesures (BIPM) and used for international atomic time (TAI) computation (TAIPPP) and universal time coordination (UTC). It is shown that the time offsets of three different time links are almost continuous and the day-boundary discontinuities are sharply eliminated by network processing, although a little extent of day-boundary discontinuities still exist in the results of UTC(USNO)-UTC(PTB). The accuracy of time transfer has been significantly improved, and the frequency stability of UTC(NTSC)-UTC(PTB) can be up to 6.8 × 10−15 on average time of more than one day. Thus, it is suitable for continuous multi-GNSS time transfer, especially for long-term clock stability comparison.


Science ◽  
2017 ◽  
Vol 358 (6359) ◽  
pp. 90-94 ◽  
Author(s):  
S. L. Campbell ◽  
R. B. Hutson ◽  
G. E. Marti ◽  
A. Goban ◽  
N. Darkwah Oppong ◽  
...  

Strontium optical lattice clocks have the potential to simultaneously interrogate millions of atoms with a high spectroscopic quality factor of 4 × 1017. Previously, atomic interactions have forced a compromise between clock stability, which benefits from a large number of atoms, and accuracy, which suffers from density-dependent frequency shifts. Here we demonstrate a scalable solution that takes advantage of the high, correlated density of a degenerate Fermi gas in a three-dimensional (3D) optical lattice to guard against on-site interaction shifts. We show that contact interactions are resolved so that their contribution to clock shifts is orders of magnitude lower than in previous experiments. A synchronous clock comparison between two regions of the 3D lattice yields a measurement precision of 5 × 10–19 in 1 hour of averaging time.


Sign in / Sign up

Export Citation Format

Share Document