shape morphing
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 169)

H-INDEX

27
(FIVE YEARS 11)

Author(s):  
Yu Wan ◽  
Keith Cuff ◽  
Michael J. Serpe

Shape memory Nitinol has long been used for actuation. However, utilizing Nitinol to fabricate novel devices for various applications is a challenge, but has shown incredible promise and impacts. Bistable metal strips are widely adopted for shape morphing purposes (primarily in kid’s toys, e.g., snap bracelets) due to their easy and robust transformation between two states. In this paper, we combine Nitinol shape memory alloy and bistable metal strip to fabricate a swimming actuator with both slow moving and fast snapping capability, akin to an octopus swimming slowly in water, but quickly moving upon encountering a threat. The actuator developed here can also swim in multiple directions, all controlled by a wireless module. Furthermore, we demonstrate that an on-board sensor can be incorporated for potential environmental monitoring applications. Taken together, along with the fact that the device developed here has no mechanical parts, makes this  an interesting potential alternative to more expensive, and energy consuming boats.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Qingyuan Bian ◽  
Linglan Fu ◽  
Hongbin Li

AbstractEngineering shape memory/morphing materials have achieved considerable progress in polymer-based systems with broad potential applications. However, engineering protein-based shape memory/morphing materials remains challenging and under-explored. Here we report the design of a bilayer protein-based shape memory/morphing hydrogel based on protein folding-unfolding mechanism. We fabricate the protein-bilayer structure using two tandem modular elastomeric proteins (GB1)8 and (FL)8. Both protein layers display distinct denaturant-dependent swelling profiles and Young’s moduli. Due to such protein unfolding-folding induced changes in swelling, the bilayer hydrogels display highly tunable and reversible bidirectional bending deformation depending upon the denaturant concentration and layer geometry. Based on these programmable and reversible bending behaviors, we further utilize the protein-bilayer structure as hinge to realize one-dimensional to two-dimensional and two-dimensional to three-dimensional folding transformations of patterned hydrogels. The present work will offer new inspirations for the design and fabrication of novel shape morphing materials.


Author(s):  
Lu Lu ◽  
Xiangxin Dang ◽  
Fan Feng ◽  
Pengyu Lv ◽  
Huiling Duan

Kresling origami has recently been widely used to design mechanical metamaterials, soft robots and smart devices, benefiting from its bistability and compression-twist coupling deformation. However, previous studies mostly focus on the traditional parallelogram Kresling patterns which can only be folded to cylindrical configurations. In this paper, we generalize the Kresling patterns by introducing free-form quadrilateral unit cells, leading to diverse conical folded configurations. The conical Kresling origami is modelled with a truss system, by which the stable states and energy landscapes are derived analytically. We find that the generalization preserves the bistable nature of parallelogram Kresling patterns, while enabling an enlarged design space of geometric parameters for structural and mechanical applications. To demonstrate this, we develop inverse design frameworks to employ conical Kresling origami to approximate arbitrary target surfaces of revolution and achieve prescribed energy landscapes. Various numerical examples obtained from our framework are presented, which agree well with the paper models and the finite-element simulations. We envision that the proposed conical Kresling pattern and inverse design framework can provide a new perspective for applications in deployable structures, shape-morphing devices, multi-modal robots and multistable metamaterials.


Author(s):  
Zhiping Chai ◽  
Liangxiong Lyu ◽  
Menghao Pu ◽  
Huageng Liang ◽  
Han Ding ◽  
...  

Being minimally invasive and highly effective, radiofrequency ablation (RFA) is widely used for small size malignant tumors treatment. However, in clinical practice, a large number of tumors are found in irregular shape, while the current RFA devices are hard to control their morphologic appearance of RFA lesions on demand, which usually ends up excessively ablating the tissues and often brings excessively irreversible damage to the organs’ functions. Here, we introduce active cannulas for each of individually-controlled sub-electrodes to achieve an on-demand shape morphing and thus conformal RFA lesion. The shape as well as the length of inserted sub-electrode can be precisely controlled by tuning the expanded length of the active stylet and relative position of the active cannula. Furthermore, owing to independent movement and energy control of each sub-electrodes, our electrode is shown to be not only efficient enough to accomplish accurate trajectory to target tissue in a single insertion, but also adaptive enough to ablate target tissues with diverse morphologic appearances and locations. Potentially, our RFA electrode is a better choice in the future clinical practice for minimally invasive treatments of malignant tumors of which preferred treatment is conformal ablation. Corresponding author(s) Email:   [email protected]  


2021 ◽  
Author(s):  
Shengli Mi ◽  
Hongyi Yao ◽  
Xiaoyu Zhao ◽  
Wei Sun

Abstract The exotic properties of mechanical metamaterials are determined by their unit-cells' structure and spatial arrangement, in analogy with the atoms of conventional materials. Companioned with the mechanism of structural or cellular materials1–5, the ancient wisdom of origami6–11 and kirigami12–16 and the involvement of multiphysics interaction2,17,18 enrich the programable mechanical behaviors of metamaterials, including shape-morphing8,12,14,16,19, compliance4,5,8,17,20, texture2,18,21, and topology11,18,22−25. However, typical design strategies are mainly convergent, which transfers various structures into one family of metamaterials that are relatively incompatible with the others and do not fully bring combinatorial principles3,10,26 into play. Here, we report a divergent strategy that designs a clan of mechanical metamaterials with diverse properties derived from a symmetric curve consisting of serpentines and arcs. We derived this composite curve into planar and cubic unit-cells and modularized them by attaching magnetics. Moreover, stacking each of them yields two- and three-dimensional auxetic metamaterials, respectively. Assembling with both modules, we achieved three thick plate-like metamaterials separately with flexibility, in-plane buckling, and foldability. Furthermore, we demonstrated that the hybrid of paradox properties is possible by combining two of the above assembles. We anticipate that this divergent strategy paves the path of building a hierarchical library of diverse combinable mechanical metamaterials and making conventional convergent strategies more efficient to various requests. Main


2021 ◽  
Author(s):  
Xiaoyue Ni ◽  
Yun Bai ◽  
Heling Wang ◽  
Yeguang Xue ◽  
Yuxin Pan ◽  
...  

Abstract Dynamic shape-morphing soft materials systems are ubiquitous in living organisms; they are also of rapidly increasing relevance to emerging technologies in soft machines1–4, flexible electronics5–7, and smart medicines8,9. Soft matter equipped with responsive components can switch between designed shapes or structures, but cannot support the types of dynamic morphing capabilities needed to reproduce natural, continuous processes of interest for many applications10–27. Challenges lie in the development of schemes to reprogram target shapes post fabrication, especially when complexities associated with the operating physics and disturbances from the environment can prohibit the use of deterministic theoretical models to guide inverse design and control strategies3,28–32. Here, we present a mechanical metasurface constructed from a matrix of filamentary metal traces, driven by reprogrammable, distributed Lorentz forces that follow from passage of electrical currents in the presence of a static magnetic field. The resulting system demonstrates complex, dynamic morphing capabilities with response times within 0.1 s. Implementing an in-situ stereo-imaging feedback strategy with a digitally controlled actuation scheme guided by an optimization algorithm, yields surfaces that can self-evolve into a wide range of 3-dimensional (3D) target shapes with high precision, including an ability to morph against extrinsic or intrinsic perturbations. These concepts support a data-driven approach to the design of dynamic, soft matter, with many unique characteristics.


Sign in / Sign up

Export Citation Format

Share Document