host shifts
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 50)

H-INDEX

36
(FIVE YEARS 5)

2021 ◽  
Vol 17 (12) ◽  
pp. e1010174
Author(s):  
Julien A. R. Amat ◽  
Veronica Patton ◽  
Caroline Chauché ◽  
Daniel Goldfarb ◽  
Joanna Crispell ◽  
...  

The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness.


2021 ◽  
Author(s):  
Nolwenn M Dheilly ◽  
Yannick Blanchard ◽  
Karyna Rosario ◽  
Pierrick Lucas

Because parasites have an inextricable relationship with their host, they have the potential to serve as viral reservoirs or facilitate virus host-shifts. Yet, little is known about viruses infecting parasitic hosts except for blood-feeding arthropods that are well-known vectors of zoonotic viruses. Herein we uncover viruses of flatworms (Phylum Platyhelminthes, group Neodermata) that specialize in parasitizing vertebrates and their ancestral free-living relatives. We discovered 115 novel viral sequences, including 1 in Macrostomorpha, 5 in Polycladida, 44 in Tricladida, 1 in Monogenea, 15 in Cestoda and 49 in Trematoda, through data mining. The majority of newly identified viruses constitute novel families or genera. Phylogenetic analyses show that the virome of flatworms changed dramatically during the transition of Neodermatans to a parasitic lifestyle. Most Neodermatan viruses seem to co-diversify with their host , with the exception of rhabdoviruses which may switch host more often, based on phylogenetic relationships. Neodermatan rhabodviruses also have an ancestral position to vertebrate-associated viruses, including Lyssaviruses, suggesting that vertebrate rhabdoviruses emerged from a flatworm rhabdovirus in a parasitized host. This study reveals an extensive diversity of viruses in Platyhelminthes and highlights the need to evaluate the role of viral infection in flatworm-associated diseases.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2484
Author(s):  
Diego A. Caraballo ◽  
Cristina Lema ◽  
Laura Novaro ◽  
Federico Gury-Dohmen ◽  
Susana Russo ◽  
...  

The rabies virus (RABV) is characterized by a history dominated by host shifts within and among bats and carnivores. One of the main outcomes of long-term RABV maintenance in dogs was the establishment of variants in a wide variety of mesocarnivores. In this study, we present the most comprehensive phylogenetic and phylogeographic analysis, contributing to a better understanding of the origins, diversification, and the role of different host species in the evolution and diffusion of a dog-related variant endemic of South America. A total of 237 complete Nucleoprotein gene sequences were studied, corresponding to wild and domestic species, performing selection analyses, ancestral states reconstructions, and recombination analyses. This variant originated in Brazil and disseminated through Argentina and Paraguay, where a previously unknown lineage was found. A single host shift was identified in the phylogeny, from dog to the crab-eating fox (Cerdocyon thous) in the Northeast of Brazil. Although this process occurred in a background of purifying selection, there is evidence of adaptive evolution -or selection of sub-consensus sequences- in internal branches after the host shift. The interaction of domestic and wild cycles persisted after host switching, as revealed by spillover and putative recombination events.


2021 ◽  
Author(s):  
Ehsan Sanaei ◽  
Gregory F Albery ◽  
Yun Kit Yeoh ◽  
Yen-Po Lin ◽  
Lyn G Cook ◽  
...  

AbstractWolbachia are among the most prevalent and widespread endosymbiotic bacteria on earth. Wolbachia’ s success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch to new host species. Whilst much progress has been made in elucidating the phenotypes induced by Wolbachia, our understanding of Wolbachia host shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia’s routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host-shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well-suited to studying host shifts. Using Illumina pooled amplicon sequencing of Wolbachia-infected scale insects and their direct associates we determined the identity of all Wolbachia strains, revealing that 32% of samples were multiply infected (with up to five distinct strains per species). We then fitted a Generalised Additive Mixed Model (GAMM) to our data to estimate the influence of factors such as the host phylogeny and the geographic distribution of each species on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop-off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps, beetles, and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host-shifting.


Author(s):  
Robert Rollins ◽  
Kozue Sato ◽  
Minoru Nakao ◽  
Mohammed Tawfeeq ◽  
Fernanda Herrera-Mesías ◽  
...  

Vector-borne pathogens exist in obligate transmission cycles between vector and reservoir host species. Host shifts can lead to geographic expansion and the emergence of new diseases. Three etiological agents of human Lyme borreliosis (Borrelia afzelii, Borrelia bavariensis, and Borrelia garinii) predominantly utilize two distinct tick species as vectors in Asia (Ixodes persulcatus) and Europe (Ixodes ricinus) but how and in which order they colonized each continent remains unknown. Here, by reconstructing the evolutionary history of 142 Eurasian isolates, we show that all three Borrelia genospecies evolved from an Asian origin, suggesting that successful expansion into Europe resulted through invading a novel vector. The pattern of gene flow between continents is different between genospecies and most likely conditioned by reservoir host association and their dispersal. Our results highlight that Eurasian Lyme borreliosis agents are all capable of geographic expansion through vector shifts, but potentially differ in their capacity as emergent pathogens.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kay Lucek ◽  
Selim Bouaouina ◽  
Amanda Jospin ◽  
Andrea Grill ◽  
Jurriaan M. de Vos

Abstract Background Wolbachia is an endosymbiont common to most invertebrates, which can have significant evolutionary implications for its host species by acting as a barrier to gene flow. Despite the importance of Wolbachia, still little is known about its prevalence and diversification pattern among closely related host species. Wolbachia strains may phylogenetically coevolve with their hosts, unless horizontal host-switches are particularly common. We address  these issues in the genus Erebia, one of the most diverse Palearctic butterfly genera. Results We sequenced the Wolbachia genome from a strain infecting Erebia cassioides and showed that it belongs to the Wolbachia supergroup B, capable of infecting arthropods from different taxonomic orders. The prevalence of Wolbachia across 13 closely related Erebia host species based on extensive population-level genetic data revealed that multiple Wolbachia strains jointly infect all investigated taxa, but with varying prevalence. Finally, the phylogenetic relationships of Wolbachia strains are in some cases significantly associated to that of their hosts, especially among the most closely related Erebia species, demonstrating mixed evidence for phylogenetic coevolution. Conclusions Closely related host species can be infected by closely related Wolbachia strains, evidencing some phylogenetic coevolution, but the actual pattern of infection more often reflects historical or contemporary geographic proximity among host species. Multiple processes, including survival in distinct glacial refugia, recent host shifts in sympatry, and a loss of Wolbachia during postglacial range expansion seem to have jointly shaped the complex interactions between Wolbachia evolution and the diversification of its host among our studied Erebia species.


Author(s):  
Federico A. Agrain ◽  
Santiago Hernández Del Pino ◽  
Guillermo P. López-García ◽  
Sergio Roig-Juñent

Abstract We present the first report of Amblycerus dispar (Sharp) attacking stored almonds [Prunus dulcis (Mill.) D. A. Webb] in Argentina. A summarized diagnosis, illustrations, and photographs of the adult and mature larva are provided to facilitate identification. We performed species distribution models for A. dispar and its main host plant Geoffroea decorticans (Gillies ex Hook. & Arn.) Burkart. We include A. dispar into a previous morphological character matrix and conduct a phylogenetic analysis to infer its phylogenetic position. The evolution of host plant associations of the genus Amblycerus is herein re-analyzed. A. dispar and its main host shows high suitability areas especially in central-west Argentina and Chile, whereas for the USA, high suitability areas were found for the south-western which include the area of almond production in this country. Although the presence of A. dispar in the USA region is very unlikely, we recommend some awareness as other bruchines are present in the area. Although A. dispar is unlikely to become an economically important risk, monitoring for early detection is recommended to avoid productivity loss, especially when the native host is nearby cultivated areas. A. dispar is hypothesized to be the sister species of A. schwarzi Kingsolver. The colonization of a Rosaceae species is a novelty for this genus, being host shifts known as an important factor affecting both natural and agricultural systems.


2021 ◽  
Author(s):  
Xavier Montagutelli ◽  
Matthieu Prot ◽  
Laurine Levillayer ◽  
Eduard Baquero Salazar ◽  
Gregory Jouvion ◽  
...  

Receptor recognition is a major determinant of viral host range, as well as infectivity and pathogenesis. Emergences have been associated with serendipitous events of adaptation upon encounters with a novel host, and the high mutation rate of RNA viruses has been proposed to explain their frequent host shifts. SARS-CoV-2 extensive circulation in humans has been associated with the emergence of variants, including variants of concern (VOCs) with diverse mutations in the spike and increased transmissibility or immune escape. Here we show that unlike the initial virus, VOCs are able to infect common laboratory mice, replicating to high titers in the lungs. This host range expansion is explained in part by the acquisition of changes at key positions of the receptor binding domain that enable binding to the mouse angiotensin-converting enzyme 2 (ACE2) cellular receptor, although differences between viral lineages suggest that other factors are involved in the capacity of SARS-CoV-2 VOCs to infect mice. This abrogation of the species barrier raises the possibility of wild rodent secondary reservoirs and provides new experimental models to study disease pathophysiology and countermeasures.


Sign in / Sign up

Export Citation Format

Share Document