primary cementing
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 42)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Romulo Francisco Bermudez Alvarado ◽  
Abdelkerim Doutoum Mahamat Habib ◽  
Jamie Scott Duguid ◽  
Manish Srivastava ◽  
Ruben A. Medina ◽  
...  

Abstract This paper discusses the value of cement logs as the core input to analyze the cement quality and validate the improvements made to cementing designs and practices of the intermediate casing string in Extended-Reach Drilling (ERD) wells. The ERD wells are being drilled from artificial islands in a field offshore in the UAE. The primary cementing objectives are isolating the reservoirs from their sublayers and protecting the casing against possible future corrosion across an upper formation. Cementing challenges include higher angle deviation, higher mud weight requirements resulting from an anisotropic, unstable shale formation present above the reservoir section. Effective reservoir management requires sound zonal isolation to eliminate crossflow between different reservoir units. In combination with standard cement bond logs (CBL), ultrasonic technology has provided detailed information about cement quality and a qualitative indication of casing position in the borehole. These have also led to valuable insight into how continued cementing designs and practices improved zonal isolation. Improvements in cement quality seen as a result of enhanced casing centralization, optimized hydraulic model, modified cement rheology, displacement rate impact, among others, were confirmed with the cement log evaluation program. The paper will present the ultrasonic and standard CBL responses, which support the enhancements made to the cementing design and practices that yield the desired results. The cement quality has been improved in the ERD wells intermediate section through strategic modification in cementing practices. Cement evaluation logs have played a significant role in validating the cementing methods’ development. Consistently improved zonal isolation results have opened up the opportunity for future efficiency gains by eliminating routine CBL.


2021 ◽  
Author(s):  
Andrey Yugay ◽  
Hamdi Bouali Daghmouni ◽  
Andrey Nestyagin ◽  
Fouad Abdulsallam ◽  
Annie Morales ◽  
...  

Abstract Well Cementing can be divided into two phases – primary and remedial cementing. Primary cementing may have 3 functions: casing support, zonal isolation and casing protection against corrosion. First two functions are commonly recognized while the third one might be a point of discussion, as the full casing coverage with 100% clean cement is not something common in most of the fields. In fact, poorly cemented areas of the casing may become negatively charged and create a zones of accelerated corrosion rate. This paper is about main role of cementing - zonal isolation. The process of primary cementing assumes that cement slurry is being pumped into the casing and displaced outside. After wait on cement time (WOC) it becomes hard, develops compressive strength and creates impermeable seal that ensures hydraulic isolation. Old and well-known technique, it still remains one of the most challenging rig operations. It is unlikely to find a service company that would guarantee 100% cement displacement behind the casing all the way from top to bottom. Main challenges in this region are quiet common for many other fields – displacement in deviated sections, losses before and during cementing, exposure to pressure during cement settling. In case the main target is not achieved (no hydraulic isolation behind the casing) – we may observe behind casing communications resulting in sustainable pressures in casing-casing annuluses. In this situation the remedial cementing takes place. It's function is to restore isolation so the cement can work as a barrier that seals off the pressure source. Despite of the good number of sealants available on the market (time, pressure, temperature activated) that can be injected from surface to cure this casing-casing pressure, Company prefers not to do so unless there is a proven injectivity capability that would allow for the sealant to reach deep enough, to protect aquifers in case of outer casing corrosion. Otherwise that would be just a ‘masking" the pressure at surface. Therefore in general Company prefers rig intervention to cure the pressure across the cap rock in between the aquifers and the reservoir. Those aquifers are illustrated on the Figure 1 below: More details on Company casing design, cement evaluation issues, sustained casing pressure phenomena and challenges have been mentioned previously [Yugay, 2019].


2021 ◽  
Author(s):  
Vikrant Wagle ◽  
Abdullah Saleh Al-Yami ◽  
Sara AlKhalaf ◽  
Khawlah Abdulaziz Alanqari ◽  
Wajid Ali ◽  
...  

Abstract A good primary cementing job governs in a great part the producing performance of a well. Successful zonal isolation, which is the main objective of any cementing job, primarily depends on the right cement design. The resin-based cement system, which is a relatively new technology within the oil industry has the potential to replace conventional cement in critical primary cementing applications. This paper describes the lab-testing and field deployment of the resin-based cement systems. The resin-based cement systems were deployed in those well sections where a potential high-pressure influx was expected. The resin-based cement system, which was placed as a tail slurry was designed to have better mechanical properties as compared to the conventional cement systems. The paper describes the process used to get the right resin-based cement slurry design and how its application was important to the success of the cementing jobs. The cement job was executed successfully and met all the zonal-isolation objectives. The resin-based cement's increased shear bond strength and better mechanical properties were deemed to be instrumental in providing a reliable barrier that would thwart any future issues arising due to sustained casing pressure (SCP). This paper describes the required lab-testing, lab-evaluation, and the successful field deployment of the resin-based cement systems.


2021 ◽  
Author(s):  
Kory Hugentobler ◽  
Joseph M. Shine ◽  
Alejandro De La Cruz Sasso ◽  
Abdulmalek Shamsan ◽  
Sandip Patil ◽  
...  

Abstract In certain regions of oil and gas operations, lost circulation is a common occurrence, especially when a majority of the openhole exposed during primary cementing is carbonate-based formations. This can lead to lost circulation risks in most applications. To overcome lost circulation risks during primary cementing, a new tailored spacer system shows to improve the cement placement success. The manuscript discusses the quality assurance and performance testing with field cases demonstrating the value contributions of the spacer for achieving zonal isolation requirements as well as the top of cement objectives. The work efforts presented shows a spacer meeting and sometimes showing incremental wellbore strengthening in comparison to the published literature for existing available spacers used to overcome similar lost circulation risks.


Author(s):  
Mou Yang ◽  
Hao Luo ◽  
Rongxuan Xie ◽  
Pengcheng Wu ◽  
Mingzheng Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document