epoxy resin nanocomposites
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 23)

H-INDEX

27
(FIVE YEARS 5)

Surfaces ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 664-682
Author(s):  
Bernhard Feichtenschlager ◽  
Silvia Pabisch ◽  
Jakob Svehla ◽  
Herwig Peterlik ◽  
Muhammad Sajjad ◽  
...  

The surface functionalization of inorganic nanoparticles is an important tool for the production of homogeneous nanocomposites. The chemical adaptation of the nano-filler surface can lead to effective weak to strong interactions between the fillers and the organic matrix. Here we present a detailed systematic study of different surface-functionalized particles in combination with a SAXS method for the systematic investigation of the interface interaction in the development of epoxy nanocomposites. We investigated the effect of surface modification of spherical SiO2 nanoparticles with 9 nm and 72 nm diameter and crystalline ZrO2 nanoparticles with 22 nm diameter on the homogeneous distribution of the fillers in diethylenetriamine (DETA) cured bisphenol-F-diglycidylether epoxy resin nanocomposites. Unmodified nanoparticles were compared with surface-modified oxides having diethylene glycol monomethyl ethers (DEG), 1,2-diols, or epoxy groups attached to the surface. The influence of surface modification on dispersion quality was investigated by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) for inorganic filler contents of 3, 5 and 10 wt%. It was shown that the dispersion quality can be optimized by varying the coupling agent end group to obtain homogeneous and transparent nanomaterials. UV/VIS measurements confirmed the transparency/translucency of the obtained materials. The relationship between particle–matrix interaction and particle–particle interaction plays a decisive role in homogeneity and is controlled by the surface groups as well as by the type, size, and morphology of the nanoparticles themselves.


2020 ◽  
Vol 16 (1) ◽  
pp. 15-20
Author(s):  
Emiri Nagase ◽  
Tomonori Iizuka ◽  
Kohei Tatsumi ◽  
Naoshi Hirai ◽  
Yoshimichi Ohki ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 733 ◽  
Author(s):  
Pinto ◽  
Amaro ◽  
Bernardo

This article presents an experimental study on the surface properties of epoxy resin nanocomposites (EPNCs) manufactured with a thermosetting epoxy resin (EP)–bisphenol A diglycidyl ether (BADGE)–2-[[4-[2-[4-(Oxiran-2-ylmethoxy)phenyl]propan-2-yl]phenoxy]methyl]oxirane) and filled with alumina nanoparticles (NPs). The NPs consist of pretreated (with a silane agent) alpha alumina with irregular shapes and a 100 nm maximum size. Three weight fractions of NPs were studied: 1, 3, and 5 wt. (%). Two different epoxy (EP) resins were manufactured, one cured and postcured with bis (4-aminophenyl) methane (DDM); and another one cured with 3-dodec-2-enyloxolane-2,5-dione (DDSA) + 8-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione (MNA). The wettability and the surface roughness of the obtained EPNCs were studied through the measurement of contact angles and topographic images obtained with atomic force microscopy (AFM), respectively. Significant influence of both the loading of NPs and used curing agents was observed. EPNCs cured with DDM were shown to be hydrophobic for 0, 1, and 3 wt. (%) and hydrophilic for 5 wt. (%). Maximum surface roughness was observed for 5 wt. (%). EPNCs cured with DDSA+MNA were shown to be hydrophilic for 0 and 1 wt. (%) and hydrophobic for 3 and 5 wt. (%). The surface roughness decreased as the weight fraction of NPs increased until 3 wt. (%), and then increased for 5 wt. (%).


RSC Advances ◽  
2020 ◽  
Vol 10 (24) ◽  
pp. 13949-13959
Author(s):  
Yanlong Sui ◽  
Lijie Qu ◽  
Peihong Li ◽  
Xueyan Dai ◽  
Qiangsheng Fang ◽  
...  

This study provided a modification strategy for improving the flame retardance of graphene and its derivatives in a polymer matrix.


Sign in / Sign up

Export Citation Format

Share Document