ga signaling
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 21)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Lu Zhao ◽  
Zhongbang Song ◽  
Bingwu Wang ◽  
Yulong Gao ◽  
Junli Shi ◽  
...  

Proanthocyanidins (PAs) are important phenolic compounds and PA biosynthesis is regulated by a ternary MBW complex consisting of a R2R3-MYB regulator, a bHLH factor and a WDR protein. In this study, a tobacco R2R3-MYB factor NtMYB330 was characterized as the PA-specific regulator in which the PA biosynthesis was promoted in the flowers of NtMYB330-overexpressing lines while decreased in the flowers of ntmyb330 mutants. NtMYB330 can interact with flavonoid-related bHLH partner NtAn1b and WDR protein NtAn11-1, and the NtMYB330-NtAn1b complex is required to achieve strong transcriptional activation of the PA-related structural genes NtDFR1, NtANS1, NtLAR1 and NtANR1. Our data reveal that NtMYB330 regulates PA biosynthesis in seeds and affects seed germination, in which NtMYB330-overexpressing lines showed higher PA accumulations in seed coats and inhibited germination, while ntmyb330 mutants had reduced seed coat PAs and improved germination. NtMYB330 affects seed germination possibly through two mechanisms: modulating seed coat PAs to affect coat-imposed dormancy. In addition, NtMYB330 regulates the expressions of abscisic acid (ABA) and gibberellin acid (GA) signaling-related genes, affecting ABA-GA crosstalk and seed germination. This study reveals that NtMYB330 specifically regulates PA biosynthesis via formation of the MBW complex in tobacco flowers and affects germination through adjustment of PA concentrations and ABA/GA signaling in tobacco seeds.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yuzhu Lu ◽  
Jia Zeng ◽  
Qiaoquan Liu

Rice Growth-Regulating Factors (GRFs) were originally identified to be gibberellin (GA)-induced, but the nature of GA induction has remained unknown because most reports thereafter focused on revealing their roles in growth-promoting activities. GRFs have the WRC (Trp, Arg, Cys) domain to target DNA and contain the QLQ (Gln, Leu, Gln) domain to interact with GRF-Interacting Factor (GIF), which recruits ATP-dependent DNA translocase Switch/Sucrose Non-fermenting (SWI/SNF) for chromatin remodeling. Both GRFs and GIFs exhibit transcriptional activities but GIFs lack a DNA-binding domain. So, GRFs act like a navigator in the GRF-GIF-SWI/SNF complex, determining when and where the complex should work on. The levels of most rice GRFs can be sensitively regulated by miR396, which responds to many developmental and environmental factors. Recent clues from several studies highlight the original question of how GRFs participate in GA signaling. DELLA (contain DELLA motif) protein plays dual roles in controlling the level of GRFs by regulating the level of miR396 and interacting with GRFs. Here we address the question of why this complex plays an essential role in controlling plant growth focusing on the action of GA signaling pivot, DELLA.


2021 ◽  
Author(s):  
Pengbai Li ◽  
Liuming Guo ◽  
Xinyuan Lang ◽  
Mingjun Li ◽  
Gentu Wu ◽  
...  

Phytohormone gibberellin (GA) is an important plant signaling molecule that regulates plant growth and defense against abiotic and biotic stresses. To date, the molecular mechanism of the plant responses to viral infection mediated by GA is still undetermined. DELLA is a repressor of GA signaling and is recognized by the F-box protein, a component of the SCF SLY1/GID2 complex. The recognized DELLA is degraded by the ubiquitin-26S proteasome, leading to the activation of the GA signaling. Here, we report that ageratum leaf curl Sichuan virus (ALCScV)-infected N. benthamiana plants showed dwarfing symptom and abnormal flower development. The infection of ALCScV alters the expressions of GA pathway-related genes and decreases the content of endogenous GA significantly in N. benthamiana. Further, ALCScV-encoded C4 protein interacts with the DELLA protein NbGAI, and interferes with the interaction between NbGAI and NbGID2 to prevent the degradation of NbGAI, leading to the inhibition of the GA signaling pathway. Silencing of NbGAI or exogenous GA 3 treatment significantly reduces viral accumulation and disease symptoms in N. benthamiana plants. The same results were proved by the experiments with C4 protein encoded by tobacco curly shoot virus (TbCSV). Therefore, we propose a novel mechanism of geminivirus C4 proteins controling virus infection and disease symptom development through interfering GA signaling pathway.


2021 ◽  
Author(s):  
Byoung-Doo Lee ◽  
Yehyun Yim ◽  
Esther Cañibano ◽  
Suk-Hwan Kim ◽  
Marta García-León ◽  
...  

AbstractUnder favorable moisture, temperature and light conditions, gibberellin (GA) biosynthesis is induced and triggers seed germination. A major mechanism by which GA promotes seed germination is by promoting the degradation of the DELLA protein RGL2, a major repressor of germination in Arabidopsis seeds. Analysis of seed germination phenotypes of constitutively photomorphogenic 1 (cop1) mutants and complemented COP1-OX/cop1-4 lines in response to GA and paclobutrazol (PAC) suggested a positive role for COP1 in seed germination and a relation with GA signaling. cop1-4 mutant seeds showed PAC hypersensitivity, but transformation with a COP1 overexpression construct rendered them PAC insensitive, with a phenotype similar to that of rgl2 mutant (rgl2-SK54) seeds. Furthermore, cop1-4 rgl2-SK54 double mutants showed a PAC-insensitive germination phenotype like that of rgl2-SK54, identifying COP1 as an upstream negative regulator of RGL2. COP1 interacts directly with RGL2 and in vivo this interaction is strongly enhanced by SPA1. COP1 directly ubiquitinates RGL2 to promote its degradation. Moreover, GA stabilizes COP1 with consequent RGL2 destabilization. By uncovering this COP1-RGL2 regulatory module, we reveal a novel mechanism whereby COP1 positively regulates seed germination and controls the expression of germination-promoting genes.


2021 ◽  
Vol 22 (16) ◽  
pp. 8694
Author(s):  
Chang Pyo Hong ◽  
Jinsoo Kim ◽  
Jinsu Lee ◽  
Seung-il Yoo ◽  
Wonsil Bae ◽  
...  

Gibberellins (GAs) are an important group of phytohormones associated with diverse growth and developmental processes, including cell elongation, seed germination, and secondary growth. Recent genomic and genetic analyses have advanced our knowledge of GA signaling pathways and related genes in model plant species. However, functional genomics analyses of GA signaling pathways in Panax ginseng, a perennial herb, have rarely been carried out, despite its well-known economical and medicinal importance. Here, we conducted functional characterization of GA receptors and investigated their physiological roles in the secondary growth of P. ginseng storage roots. We found that the physiological and genetic functions of P. ginseng gibberellin-insensitive dwarf1s (PgGID1s) have been evolutionarily conserved. Additionally, the essential domains and residues in the primary protein structure for interaction with active GAs and DELLA proteins are well-conserved. Overexpression of PgGID1s in Arabidopsis completely restored the GA deficient phenotype of the Arabidopsis gid1a gid1c (atgid1a/c) double mutant. Exogenous GA treatment greatly enhanced the secondary growth of tap roots; however, paclobutrazol (PCZ), a GA biosynthetic inhibitor, reduced root growth in P. ginseng. Transcriptome profiling of P. ginseng roots revealed that GA-induced root secondary growth is closely associated with cell wall biogenesis, the cell cycle, the jasmonic acid (JA) response, and nitrate assimilation, suggesting that a transcriptional network regulate root secondary growth in P. ginseng. These results provide novel insights into the mechanism controlling secondary root growth in P. ginseng.


2021 ◽  
Vol 22 (14) ◽  
pp. 7673
Author(s):  
Shufen Wang ◽  
Siqi Lv ◽  
Tong Zhao ◽  
Meng Jiang ◽  
Dehai Liu ◽  
...  

Brassinosteroids (BRs) are growth-promoting phytohormones that can efficiently function by exogenous application at micromolar concentrations or by endogenous fine-tuning of BR-related gene expression, thus, precisely controlling BR signal strength is a key factor in exploring the agricultural potential of BRs. BRASSINOSTEROID INSENSITIVE1 (BRI1), a BR receptor, is the rate-limiting enzyme in BR signal transduction, and the phosphorylation of each phosphorylation site of SlBRI1 has a distinct effect on BR signal strength and botanic characteristics. We recently demonstrated that modifying the phosphorylation sites of tomato SlBRI1 could improve the agronomic traits of tomato to different extents; however, the associated agronomic potential of SlBRI1 phosphorylation sites in tomato has not been fully exploited. In this research, the biological functions of the phosphorylation site threonine-825 (Thr-825) of SlBRI1 in tomato were investigated. Phenotypic analysis showed that, compared with a tomato line harboring SlBRI1, transgenic tomato lines expressing SlBRI1 with a nonphosphorylated Thr-825 (T825A) exhibited a larger plant size due to a larger cell size and higher yield, including a greater plant height, thicker stems, longer internodal lengths, greater plant expansion, a heavier fruit weight, and larger fruits. Molecular analyses further indicated that the autophosphorylation level of SlBRI1, BR signaling, and gibberellic acid (GA) signaling were elevated when SlBRI1 was dephosphorylated at Thr-825. Taken together, the results demonstrated that dephosphorylation of Thr-825 can enhance the functions of SlBRI1 in BR signaling, which subsequently activates and cooperates with GA signaling to stimulate cell elongation and then leads to larger plants and higher yields per plant. These results also highlight the agricultural potential of SlBRI1 phosphorylation sites for breeding high-yielding tomato varieties through precise control of BR signaling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Wang ◽  
Wanting Yu ◽  
Lingfang Ran ◽  
Zhong Chen ◽  
Chuannan Wang ◽  
...  

Gibberellins (GAs) promote secondary cell wall (SCW) development in plants, but the underlying molecular mechanism is still to be elucidated. Here, we employed a new system, the first internode of cotton, and the virus-induced gene silencing method to address this problem. We found that knocking down major DELLA genes via VIGS phenocopied GA treatment and significantly enhanced SCW formation in the xylem and phloem of cotton stems. Cotton DELLA proteins were found to interact with a wide range of SCW-related NAC proteins, and virus-induced gene silencing of these NAC genes inhibited SCW development with downregulated biosynthesis and deposition of lignin. The findings indicated a framework for the GA regulation of SCW formation; that is, the interactions between DELLA and NAC proteins mediated GA signaling to regulate SCW formation in cotton stems.


Author(s):  
Di Yang ◽  
Xiong Liu ◽  
Xiaoming Yin ◽  
Tian Dong ◽  
Min Yu ◽  
...  

ABSTRACT Mesocotyl elongation of rice is crucial for seedlings pushing out of deep soil. Underlying mechanisms on the phospholipid signaling in mesocotyl growth of rice are elusive. Here we report that the rice non-specific phospholipase C6 (OsNPC6) is involved in the mesocotyl elongation. Our results indicated that all five rice OsNPCs (OsNPC1, OsNPC2, OsNPC3, OsNPC4 and OsNPC6) hydrolyzed the substrate phosphatidylcholine (PC) to phosphocholine (PCho), and all of them showed plasma membrane localization. Overexpression (OE) of OsNPC6 produced plants with shorter mesocotyls, while comparing to those of Nipponbare (Nip) and npc6 mutants. Although the mesocotyl growth of npc6 mutants was not much affected without GA3, it was obviously elongated by the treatment of GA. Upon GA3 treatment, SLENDER RICE1 (SLR1), the DELLA protein of gibberellin (GA) signaling, was drastically increased in OE plants, in contrary, the level of SLR1 was found decreased in npc6 mutants. The GA-enhanced mesocotyl elongation and the GA-impaired SLR1 level in npc6 mutants were attenuated by the supplementation of PCho. Further analysis indicated that the GA-induced expression of phospho-base N-methyltransferase 1 (PMT1) in npc6 mutants was significantly weakened by the addition of PCho. In summary, our results suggest that OsNPC6 is involved in mesocotyl development via modulation of phosphocholine in rice.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Wenrui Li ◽  
Chuangfeng Liu ◽  
Jingling Liu ◽  
Zhenqing Bai ◽  
Zongsuo Liang

Abstract Background Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants with high medicinal value. Gibberellins are growth-promoting phytohormones that regulate numerous growth and developmental processes in plants. However, their role on the secondary metabolism regulation has not been investigated. Results In this study, we found that gibberellic acid (GA) can promote hairy roots growth and increase the contents of tanshinones and phenolic acids. Transcriptomic sequencing revealed that many genes involved in the secondary metabolism pathway were the GA-responsive. After further analysis of GA signaling pathway genes, which their expression profiles have significantly changed, it was found that the GRAS transcription factor family had a significant response to GA. We identified 35 SmGRAS genes in S. miltiorrhiza, which can be divided into 10 subfamilies. Thereafter, members of the same subfamily showed similar conserved motifs and gene structures, suggesting possible conserved functions. Conclusions Most SmGRAS genes were significantly responsive to GA, indicating that they may play an important role in the GA signaling pathway, also participating in the GA regulation of root growth and secondary metabolism in S. miltiorrhiza.


Sign in / Sign up

Export Citation Format

Share Document