plasma flows
Recently Published Documents


TOTAL DOCUMENTS

758
(FIVE YEARS 125)

H-INDEX

36
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Motoharu Nowada ◽  
Adrian Grocott ◽  
Quan-Qi Shi

Abstract. We investigate ionospheric flow patterns from 28th January 2002 associated with the development of the nightside distorted end of a “J”-shaped Transpolar Arc (nightside distorted TPA). Based on the nightside ionospheric flows near to the TPA, detected by the SuperDARN radars, we discuss how the distortion of the nightside end toward the pre-midnight sector is produced. The “J”-shaped TPA was seen under southward Interplanetary Magnetic Field (IMF) conditions, in the presence of a dominant dawnward IMF-By component. At the onset time of the nightside distorted TPA, particular equatorward plasma flows at the TPA growth point were observed in the post-midnight sector, flowing out of the polar cap and then turning toward the pre-midnight sector of the main auroral oval along the distorted nightside part of the TPA. We suggest that these plasma flows play a key role in causing the nightside distortion of the TPA. SuperDARN also found ionospheric flows typically associated with “Tail Reconnection during IMF Northward Non-substorm Intervals” (TRINNIs) on the nightside main auroral oval before and during the TPA interval, indicating that nightside magnetic reconnection is an integral process to the formation of the nightside distorted TPA. During the TPA growth, SuperDARN also detected anti-sunward flows across the open-closed field line boundary on the dayside that indicate the occurrence of low-latitude dayside reconnection and ongoing Dungey cycle driving. This suggests that nightside distorted TPA can grow even in Dungey-cycle-driven plasma flow patterns.


Author(s):  
Wenjin Chen ◽  
Zhiwei Ma ◽  
Haowei Zhang ◽  
Wei Zhang ◽  
Longwen Yan

Abstract Magnetohydrodynamic equilibrium schemes with toroidal plasma flows and the scrape-off layer are developed for the 'divertor-type' and 'limiter-type' free boundaries in the tokamak cylindrical coordinator. With a toroidal plasma flow, the flux functions are considerably different under the isentropic and isothermal assumptions. The effects of the toroidal flow on the magnetic axis shift are investigated. In a high beta plasma, the magnetic shift due to the toroidal flow are almost the same for both the isentropic and isothermal cases, and are about 0.04a0 (a0 is the minor radius) for M0=0.2 (the toroidal Alfvѐn Mach number on the magnetic axis). In addition, the X-point is slightly shifted upward by 0.0125 a0. But the magnetic axis and the X-point shift due to the toroidal flow may be neglected because M0 is usually less than 0.05 in a real tokamak. The effects of the toroidal flow on the plasma parameters are also investigated. The high toroidal flow shifts the plasma outward due to the centrifugal effect. Temperature profiles are noticeable different because the plasma temperature is a flux function in the isothermal case.


Author(s):  
Ivan F. Punanov ◽  
Rafail V. Emlin ◽  
Pavel A. Morozov ◽  
Yevgeny N. Shcherbakov

2021 ◽  
Author(s):  
Shawn Angelo Zamperini ◽  
J.H. Nichols ◽  
Peter C. Stangeby ◽  
David Donovan ◽  
Jonah David Duran ◽  
...  

Abstract Near-separatrix impurity accumulation between the crown and the outer midplane of tokamaks is a common feature in results from codes such as SOLPS-ITER and DIVIMP; however, experimental evidence of accumulation has only recently been obtained and is reported here. The codes find that the poloidal distribution of impurity ions in the scrape-off layer (SOL) depends primarily on toroidal field (BT)-dependent parallel flow patterns of the background plasma and the parallel ion temperature gradient (∇||Tion) force. Experimentally, Mach probes used in L-mode plasmas with favorable (for H-mode access) BT measure fast (M~0.3-0.5) inner-target-directed (ITD) background plasma flows at the crown of single-null discharges. This study reports a set of DIVIMP simulations for two similar H-mode discharges from the DIII-D W Metal Rings Campaign differing primarily in BT-direction to assess the effect that fast ITD flows have on the distribution of W ions in the SOL. It is found that for imposed ITD flows of M = 0.3, W ions that otherwise accumulate due to the ∇||Tion-force are largely flushed out. It is also found that doubling the radial diffusion coefficient from 0.3 to 0.6 m2/s prevents accumulation due to rapid cross-field transport into the far-SOL, where background plasma flows drain W ions to the divertors. Far-SOL W distributions from DIVIMP are then used to specify input to the impurity transport code 3DLIM, which is used to interpretively model collector probe deposition patterns measured in the “wall-SOL.” It is demonstrated that the deposition patterns are consistent with the DIVIMP predictions of near-SOL accumulation for the unfavorable-BT direction, and little/no accumulation for the favorable-BT direction. The wall-SOL collector probes have thus provided the first experimental evidence, albeit indirect, of near-SOL W accumulation – finding it occurs for the unfavorable-BT direction only. For the favorable-BT direction, fast flows can largely prevent accumulation from occurring.


2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Harold Weitzner ◽  
Wrick Sengupta

Steady plasma flows have been studied almost exclusively in systems with continuous symmetry or in open domains. In the absence of continuous symmetry, the lack of a conserved quantity makes the study of flows intrinsically challenging. In a toroidal domain, the requirement of double periodicity for physical quantities adds to the complications. In particular, the magnetohydrodynamics (MHD) model of plasma steady state with the flow in a non-symmetric toroidal domain allows the development of singularities when the rotational transform of the magnetic field is rational, much like the equilibrium MHD model. In this work, we show that steady flows can still be maintained provided the rotational transform is close to rational and the magnetic shear is weak. We extend the techniques developed in carrying out perturbation methods to all orders for static MHD equilibrium by Weitzner (Phys. Plasmas, vol. 21, 2014, p. 022515) to MHD equilibrium with flows. We construct perturbative MHD equilibrium in a doubly periodic domain with nearly parallel flows by systematically eliminating magnetic resonances order by order. We then utilize an additional symmetry of the flow problem, first discussed by Hameiri (J. Math. Phys., vol. 22, 1981, pp. 2080–2088, § III), to obtain a generalized Grad–Shafranov equation for a class of non-symmetric three-dimensional MHD equilibrium with flows both parallel and perpendicular to the magnetic field. For this class of flows, we can obtain non-symmetric generalizations of integrals of motion, such as Bernoulli's function and angular momentum. Finally, we obtain the generalized Hamada conditions, which are necessary to suppress singular currents in such a system when the magnetic field lines are closed. We do not attempt to address the question of neoclassical damping of flows.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012069
Author(s):  
A S Skriabin ◽  
V D Telekh ◽  
A V Pavlov ◽  
D A Chesnokov ◽  
V G Zhupanov ◽  
...  

Abstract Coaxial plasma accelerators are under consideration for generation of compressed plasma flows which are suitable for emitting of powerful broadband radiation (including the VUV/UV ranges). The using of different gases in a chamber allows to control the spectrum. For inert gases the upper value of energy is limited by its first ionization potential (for neon ≈ 21.55 eV). For air the maximum energy is limited by ≈ 6 eV. Such technical systems are suitable for studying of optical properties stability for thin multilayers and the other coatings. Such tests were fulfilled for bilayers based on HfO2/SiO2 pair on silica substrates which is stable for laser radiation in the visible and IR ranges. It was found that a single exposure of the radiation (for neon and air) caused a relative decline of the radiation durability in ≈ 1.03…1.14 times. Spectral measuring demonstrated that the maximum decline of transmission (up to of ≈ 3…4%) was detected for exposures in neon in the range of 320…450 nm.


Sign in / Sign up

Export Citation Format

Share Document