performance traits
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 119)

H-INDEX

30
(FIVE YEARS 4)

Author(s):  
C. Hearn ◽  
M. Egan ◽  
D.P. Berry ◽  
A. Geoghegan ◽  
M. O'Leary ◽  
...  

Abstract Little information is available on the phenotypic performance of perennial ryegrass varieties when exposed to grazing conditions on commercial grassland farms. Grass varieties are classically evaluated in mechanically defoliated plot systems which, although designed to mimic grazing conditions, do not fully capture the range of stresses or interactions that a sward is subjected to under commercial settings or over any period longer than 4 years. The evolution of technology in the form of PastureBase Ireland has led to agronomic data of individual paddocks being made available for analysis over multiple years. Data used in the current study consisted of dry matter (DM) production and ground score data across a 7-year period from ten perennial ryegrass varieties grown as monocultures in 559 paddocks on 98 commercial farms. The results demonstrated how perennial ryegrass variety is associated with a range of agronomic performance traits on commercial farms; including total and seasonal DM production, grazing DM production and number of grazing events. Varieties with the highest total DM production also had the highest spring and mid-season DM production; autumn DM production was associated with the interaction between variety and year. The highest producing variety in the study, AberGain, produced 1342 kg DM/ha/year more than the mean of all other varieties. Variety differences manifested themselves as swards aged, with some varieties increasing in total DM production while others reduced in total DM production. The current work provides a basis for the consideration of on-farm variety assessment in the composition of future variety evaluation protocols.


Author(s):  
Shabahat Mumtaz ◽  
Anupama Mukherjee ◽  
Prajwalita Pathak ◽  
Kaiser Parveen

Background: A population is continuously facing the changing environment and its directly influencing the production of animal so to adopt these changes population must be flexible and have sufficient variability to overcome the adverse affects of environment. The evaluation of animals in terms of production performance traits along with impact of inbreeding coefficient is essential to formulate breeding and selection strategies for higher genetic improvement. Methods: Genealogy data of 6429 animals maintained at ICAR-NDRI, Karnal, India was analyzed by web-based POPREP application tool (http:// poprep.tzv.fal.de) and ENDOG V5.8 used to study the population structure and genetic diversity and regression model to study the effect of inbreeding on first lactation productive traits in Murrah buffaloes. Result: The result indicated that 91.91% of the individuals had known pedigree. The maximum generation traced was 13 with mean, full and equivalent complete generation as 5.93, 1.67 and 3.25 respectively. The average generation interval was 8.28 years and longer for the sire-son pathway and 2.16% was average inbreeding in whole population. The average genetic diversity loss was 2.10% indicated that the population has been stable with sufficient diversity. The study also revealed non significant effect of inbreeding on all first lactation traits. The low inbreeding was firstly due to introduction of new genetic variant and culling of animals avoiding mating of related ones and secondly due to incompleteness of pedigree in earlier years. This can be used as a base line information of phenomic needs to be generated before applying genomics tools in particular herd to be used as reference population in future for genomic selection.


2021 ◽  
Author(s):  
Samuel Ginot ◽  
Benedikt Hallgrímsson ◽  
Sylvie Agret ◽  
Julien Claude

AbstractFitness-related traits tend to have low heritabilities. Conversely, morphology tends to be highly heritable. Yet, many fitness-related performance traits such as running speed or bite force depend critically on morphology. Craniofacial morphology correlates with bite performance in several groups including rodents. However, within species, this relationship is less clear, and the genetics of performance, morphology and function are rarely analyzed in combination. Here, we use a half-sib design in outbred wild-derived Mus musculus to study the morphology-bite force relationship and determine whether there is additive genetic (co-)variance for these traits. Results suggest that bite force has undetectable additive genetic variance and heritability in this sample, while morphological traits related mechanically to bite force exhibit varying levels of heritability. The most heritable traits include the length of the mandible which relates to bite force. Despite its correlation with morphology, realized bite force was not heritable, which suggests it is less responsive to selection in comparison to its morphological determinants. We explain this paradox with a non-additive, many-to-one mapping hypothesis of heritable change in complex traits. We furthermore propose that performance traits could evolve if pleiotropic relationships among the determining traits are modified.


2021 ◽  
pp. 104777
Author(s):  
Ariane Horst ◽  
Marvin Gertz ◽  
Barbara Voß ◽  
Eckhard Stamer ◽  
Joachim Krieter

Aquaculture ◽  
2021 ◽  
pp. 737590
Author(s):  
Chengfei Sun ◽  
Junjian Dong ◽  
Wuhui Li ◽  
Yuanyuan Tian ◽  
Jie Hu ◽  
...  

2021 ◽  
Vol 848 (1) ◽  
pp. 012072
Author(s):  
A S Gorelik ◽  
O V Gorelik ◽  
A V Miftakhutdinov ◽  
N P Smolyakova ◽  
S G Zernina

Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2509
Author(s):  
Franziska Weik ◽  
Rebecca E. Hickson ◽  
Stephen T. Morris ◽  
Dorian J. Garrick ◽  
Jason A. Archer

Maternal performance is a major driver of profitability in cow-calf beef cattle enterprises. The aim of this research was to evaluate the inheritance of maternal performance traits and examine the intercorrelation among reproduction, live weight, hip height, body condition and maternal contribution to calf weaning weight in 15-month-old heifers, 2-year-old cows and mature cows in New Zealand beef herds. Data were collected on a total of 14,241 cows and their progeny on five commercial New Zealand hill country farms. Heritabilities were low for reproductive traits in heifers and mature cows (0–0.06) but were greater in 2-year-old cows (0.12–0.21). Body condition scores were lowly (0.15–0.26) and live weights (0.42–0.48) and hip heights (0.47–0.65) highly heritable in heifers, 2-year-old cows and mature cows. Results indicate that 2-year-old cows with higher genetic potential for rebreeding ability may have greater genetic merit for live weight, hip height and body condition as heifers (rg = 0.19–0.54) but are unlikely to be larger cows at maturity (rg = −0.27–−0.10). The maternal genetic effect on weaning weight had a heritability of 0.20 and was negatively genetically correlated with body condition score in lactating cows (rg = −0.55–−0.40) but positively genetically correlated with rebreeding performance (rg = 0.48).


Sign in / Sign up

Export Citation Format

Share Document