adiabatic quantum computing
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
Vol 3 (1) ◽  
pp. 1-20
Author(s):  
Stuart M. Harwood ◽  
Dimitar Trenev ◽  
Spencer T. Stober ◽  
Panagiotis Barkoutsos ◽  
Tanvi P. Gujarati ◽  
...  

The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in general nonconvex, the method can converge to suboptimal parameter values that do not yield the minimum eigenvalue. In this work, we address this shortcoming by adopting the concept of variational adiabatic quantum computing (VAQC) as a procedure to improve VQE. In VAQC, the ground state of a continuously parameterized Hamiltonian is approximated via a parameterized quantum circuit. We discuss some basic theory of VAQC to motivate the development of a hybrid quantum-classical homotopy continuation method. The proposed method has parallels with a predictor-corrector method for numerical integration of differential equations. While there are theoretical limitations to the procedure, we see in practice that VAQC can successfully find good initial circuit parameters to initialize VQE. We demonstrate this with two examples from quantum chemistry. Through these examples, we provide empirical evidence that VAQC, combined with other techniques (an adaptive termination criteria for the classical optimizer and a variance-based resampling method for the expectation evaluation), can provide more accurate solutions than “plain” VQE, for the same amount of effort.


2021 ◽  
Vol 155 (23) ◽  
pp. 234106
Author(s):  
Vladimir Kremenetski ◽  
Carlos Mejuto-Zaera ◽  
Stephen J. Cotton ◽  
Norm M. Tubman

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Naeimeh Mohseni ◽  
Marek Narozniak ◽  
Alexey N. Pyrkov ◽  
Valentin Ivannikov ◽  
Jonathan P. Dowling ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Naeimeh Mohseni ◽  
Marek Narozniak ◽  
Alexey N. Pyrkov ◽  
Valentin Ivannikov ◽  
Jonathan P. Dowling ◽  
...  

AbstractIncorporating protection against quantum errors into adiabatic quantum computing (AQC) is an important task due to the inevitable presence of decoherence. Here, we investigate an error-protected encoding of the AQC Hamiltonian, where qubit ensembles are used in place of qubits. Our Hamiltonian only involves total spin operators of the ensembles, offering a simpler route towards error-corrected quantum computing. Our scheme is particularly suited to neutral atomic gases where it is possible to realize large ensemble sizes and produce ensemble-ensemble entanglement. We identify a critical ensemble size Nc where the nature of the first excited state becomes a single particle perturbation of the ground state, and the gap energy is predictable by mean-field theory. For ensemble sizes larger than Nc, the ground state becomes protected due to the presence of logically equivalent states and the AQC performance improves with N, as long as the decoherence rate is sufficiently low.


2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Narendra N. Hegade ◽  
Koushik Paul ◽  
Yongcheng Ding ◽  
Mikel Sanz ◽  
F. Albarrán-Arriagada ◽  
...  

Author(s):  
Erica K. Grant ◽  
Travis S. Humble

Adiabatic quantum computing (AQC) is a model of computation that uses quantum mechanical processes operating under adiabatic conditions. As a form of universal quantum computation, AQC employs the principles of superposition, tunneling, and entanglement that manifest in quantum physical systems. The AQC model of quantum computing is distinguished by the use of dynamical evolution that is slow with respect to the time and energy scales of the underlying physical systems. This adiabatic condition enforces the promise that the quantum computational state will remain well-defined and controllable thus enabling the development of new algorithmic approaches. Several notable algorithms developed within the AQC model include methods for solving unstructured search and combinatorial optimization problems. In an idealized setting, the asymptotic complexity analyses of these algorithms indicate computational speed-ups may be possible relative to state-of-the-art conventional methods. However, the presence of non-ideal conditions, including non-adiabatic dynamics, residual thermal excitations, and physical noise complicate the assessment of the potential computational performance. A relaxation of the adiabatic condition is captured in the complementary computational heuristic of quantum annealing, which accommodates physical systems operating at finite temperature and in open environments. While quantum annealing (QA) provides a more accurate model for the behavior of actual quantum physical systems, the possibility of non-adiabatic effects obscures a clear separation with conventional computing complexity. A series of technological advances in the control of quantum physical systems have enabled experimental AQC and QA. Prominent examples include demonstrations using superconducting electronics, which encode quantum information in the magnetic flux induced by a weak current operating at cryogenic temperatures. A family of devices developed specifically for unconstrained optimization problems has been applied to solve problems in specific domains including logistics, finance, material science, machine learning, and numerical analysis. An accompanying infrastructure has also developed to support these experimental demonstrations and to enable access of a broader community of users. Although AQC is most commonly applied in superconducting technologies, alternative approaches include optically trapped neutral atoms and ion-trap systems. The significant progress in the understanding of AQC has revealed several open topics that continue to motivate research into this model of quantum computation. Foremost is the development of methods for fault-tolerant operation that will ensure the scalability of AQC for solving large-scale problems. In addition, unequivocal experimental demonstrations that differentiate the computational power of AQC and its variants from conventional computing approaches are needed. This will also require advances in the fabrication and control of quantum physical systems under the adiabatic restrictions.


Sign in / Sign up

Export Citation Format

Share Document