energy states
Recently Published Documents


TOTAL DOCUMENTS

767
(FIVE YEARS 149)

H-INDEX

45
(FIVE YEARS 7)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Yujin Kim ◽  
Yoonsang Park ◽  
Seulgi Han ◽  
Wonchan Park ◽  
Mungu Kim ◽  
...  

The origin and classification of energy states, as well as the electronic transitions and energy transfers associated with them, have been recognized as critical factors for understanding the optical properties of carbon nanodots (CNDs). Herein, we report the synthesis of CNDs in an optimized process that allows low-temperature carbonization using ethanolamine as the major precursor and citric acid as an additive. The results obtained herein suggest that the energy states in our CNDs can be classified into four different types based on their chemical origin: carbogenic core states, surface defective states, molecular emissive states, and non-radiative trap states. Each energy state is associated with the occurrence of different types of emissions in the visible to near-infrared (NIR) range and the generation of reactive oxygen species (ROS). The potential pathways of radiative/non-radiative transitions in CNDs have been systematically studied using visible-to-NIR emission spectroscopy and fluorescence decay measurements. Furthermore, the bright photoluminescence and ROS generation of these CNDs render them suitable for in vitro imaging and photodynamic therapy applications. We believe that these new insights into the energy states of CNDs will result in significant improvements in other applications, such as photocatalysis and optoelectronics.


Technologies ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Dimitrios Ntalaperas ◽  
Nikos Konofaos

In this paper, we introduce a novel coding scheme, which allows single quantum systems to encode multi-qubit registers. This allows for more efficient use of resources and the economy in designing quantum systems. The scheme is based on the notion of encoding logical quantum states using the charge degree of freedom of the discrete energy spectrum that is formed by introducing impurities in a semiconductor material. We propose a mechanism of performing single qubit operations and controlled two-qubit operations, providing a mechanism for achieving these operations using appropriate pulses generated by Rabi oscillations. The above architecture is simulated using the Armonk single qubit quantum computer of IBM to encode two logical quantum states into the energy states of Armonk’s qubit and using custom pulses to perform one and two-qubit quantum operations.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1528
Author(s):  
Mustahseen M. Indaleeb ◽  
Sourav Banerjee

Simultaneous occurrence of Dirac-like cones at the center of the Brillouin zone (Г) at two different energy states is termed Dual-Dirac-like cones (DDC) in this article. The occurrence of DDC is a rare phenomenon. Thus, the generation of multiple Dirac-like cones at the center of the Brillouin zone is usually non-manipulative and poses a challenge to achieve through traditional accidental degeneracy. However, if predictively created, DDC will have multiple engineering applications with acoustics and vibration. Thus, the possibilities of creating DDC have been identified herein using a simple square periodic array of tunable square phononic crystals (PnCs) in air media. It was found that antisymmetric deaf bands may play critical roles in tracking the DDC. Hence, pivoting on the deaf bands at two different energy states, an optimized tuning parameter was found to achieve Dirac-like cones at two distinct frequency states, simultaneously. Orthogonal wave transport identified as key Dirac phenomena was achieved at two frequencies, herein. It was identified that beyond the Dirac-like cone, the Dirac phenomena remain dominant when a doubly degenerated state created by a top band with positive curvature and a near-flat deaf band are lifted from a bottom band with negative curvature. Utilizing a mechanism of rotating the PnCs near a fixed deaf band, frequencies are tracked to form the DDC, and orthogonal wave transport is demonstrated. Exploiting the dispersion behavior, unique acoustic phenomena, such as ballistic wave transmission, pseudo diffusion and acoustic cloaking are also demonstrated at the Dirac frequencies using numerical simulation. The proposed tunable acoustic PnCs will have important applications in acoustic and ultrasonic imaging, waveguiding and even acoustic computing.


2021 ◽  
Vol 274 ◽  
pp. 115489
Author(s):  
Abdolali Rabanian ◽  
Mina Neghabi ◽  
Mehdi Zadsar ◽  
Mostafa Jafari

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Timothée Leleu ◽  
Farad Khoyratee ◽  
Timothée Levi ◽  
Ryan Hamerly ◽  
Takashi Kohno ◽  
...  

AbstractThe development of physical simulators, called Ising machines, that sample from low energy states of the Ising Hamiltonian has the potential to transform our ability to understand and control complex systems. However, most of the physical implementations of such machines have been based on a similar concept that is closely related to relaxational dynamics such as in simulated, mean-field, chaotic, and quantum annealing. Here we show that dynamics that includes a nonrelaxational component and is associated with a finite positive Gibbs entropy production rate can accelerate the sampling of low energy states compared to that of conventional methods. By implementing such dynamics on field programmable gate array, we show that the addition of nonrelaxational dynamics that we propose, called chaotic amplitude control, exhibits exponents of the scaling with problem size of the time to find optimal solutions and its variance that are smaller than those of relaxational schemes recently implemented on Ising machines.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2100
Author(s):  
Luciano Boi

Symmetry (and group theory) is a fundamental principle of theoretical physics. Finite symmetries, continuous symmetries of compact groups, and infinite-dimensional representations of noncompact Lie groups are at the core of solid physics, particle physics, and quantum physics, respectively. The latter groups now play an important role in many branches of mathematics. In more recent years, we have been faced with the impact of topological quantum field theory (TQFT). Topology and symmetry have deep connections, but topology is inherently broader and more complex. While the presence of symmetry in physical phenomena imposes strong constraints, topology seems to be related to low-energy states and is very likely to provide information about the different dynamical trajectories and patterns that particles can follow. For example, regarding the relationship of topology to low-energy states, Hodge’s theory of harmonic forms shows that the zero-energy states (for differential forms) correspond to the cohomology. Regarding the relationship of topology to particle trajectories, a topological knot can be seen as an orbit with complex properties in spacetime. The various deformations or embeddings of the knot, performed in low or high dimensions, allow defining different equivalence classes or topological types, and interestingly, it is possible from these types to study the symmetries associated with the deformations and their changes. More specifically, in the present work, we address two issues: first, that quantum geometry deforms classical geometry, and that this topological deformation may produce physical effects that are specific to the quantum physics scale; and second, that mirror symmetry and the phenomenon of topological change are closely related. This paper was aimed at understanding the conceptual and physical significance of this connection.


2021 ◽  
pp. 209-214
Author(s):  
Nicolas N. Madigan ◽  
Nathan P. Staff

Cell death occurs after an irreversible insult or stress overwhelms the cell’s compensatory mechanisms of homeostasis and repair. Cellular necrosis, apoptosis, and autophagy are increasingly understood to be interconnected biochemical processes that may coexist in vascular, inflammatory, and neurodegenerative conditions. Traditional classifications of cell death pathways are 1) necrosis; 2) programmed nuclear cell death, including apoptosis; and 3) autophagy. These processes occur in the context of variable cause and severity of injury, variable cellular metabolic and energy states, and variable fitness to compensate.


Sign in / Sign up

Export Citation Format

Share Document