visual cortices
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 82)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuang Geng ◽  
Nicola Molinaro ◽  
Polina Timofeeva ◽  
Ileana Quiñones ◽  
Manuel Carreiras ◽  
...  

AbstractWords representing objects (nouns) and words representing actions (verbs) are essential components of speech across languages. While there is evidence regarding the organizational principles governing neural representation of nouns and verbs in monolingual speakers, little is known about how this knowledge is represented in the bilingual brain. To address this gap, we recorded neuromagnetic signals while highly proficient Spanish–Basque bilinguals performed a picture-naming task and tracked the brain oscillatory dynamics underlying this process. We found theta (4–8 Hz) power increases and alpha–beta (8–25 Hz) power decreases irrespectively of the category and language at use in a time window classically associated to the controlled retrieval of lexico-semantic information. When comparing nouns and verbs within each language, we found theta power increases for verbs as compared to nouns in bilateral visual cortices and cognitive control areas including the left SMA and right middle temporal gyrus. In addition, stronger alpha–beta power decreases were observed for nouns as compared to verbs in visual cortices and semantic-related regions such as the left anterior temporal lobe and right premotor cortex. No differences were observed between categories across languages. Overall, our results suggest that noun and verb processing recruit partially different networks during speech production but that these category-based representations are similarly processed in the bilingual brain.


2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Gabriele Paolini ◽  
Francesco Sarnari ◽  
Riccardo Meucci ◽  
Stefano Euzzor ◽  
Jean-Mark Ginoux ◽  
...  

We propose a fast nonlinear method for assessing quantitatively both the existence and directionality of linear and nonlinear couplings between a pair of time series. We test this method, called Boolean Slope Coherence (BSC), on bivariate time series generated by various models, and compare our results with those obtained from different well-known methods. A similar approach is employed to test the BSC’s capability to determine the prevalent coupling directionality. Our results show that the BSC method is successful for both quantifying the coupling level between a pair of signals and determining their directionality. Moreover, the BSC method also works for noisy as well as chaotic signals and, as an example of its application to real data, we tested it by analyzing neurophysiological recordings from visual cortices.


Author(s):  
Aleena R. Garner ◽  
Georg B. Keller

AbstractLearned associations between stimuli in different sensory modalities can shape the way we perceive these stimuli. However, it is not well understood how these interactions are mediated or at what level of the processing hierarchy they occur. Here we describe a neural mechanism by which an auditory input can shape visual representations of behaviorally relevant stimuli through direct interactions between auditory and visual cortices in mice. We show that the association of an auditory stimulus with a visual stimulus in a behaviorally relevant context leads to experience-dependent suppression of visual responses in primary visual cortex (V1). Auditory cortex axons carry a mixture of auditory and retinotopically matched visual input to V1, and optogenetic stimulation of these axons selectively suppresses V1 neurons that are responsive to the associated visual stimulus after, but not before, learning. Our results suggest that cross-modal associations can be communicated by long-range cortical connections and that, with learning, these cross-modal connections function to suppress responses to predictable input.


2021 ◽  
Vol 15 ◽  
Author(s):  
Trung Quang Pham ◽  
Shota Nishiyama ◽  
Norihiro Sadato ◽  
Junichi Chikazoe

Multivoxel pattern analysis (MVPA) has become a standard tool for decoding mental states from brain activity patterns. Recent studies have demonstrated that MVPA can be applied to decode activity patterns of a certain region from those of the other regions. By applying a similar region-to-region decoding technique, we examined whether the information represented in the visual areas can be explained by those represented in the other visual areas. We first predicted the brain activity patterns of an area on the visual pathway from the others, then subtracted the predicted patterns from their originals. Subsequently, the visual features were derived from these residuals. During the visual perception task, the elimination of the top-down signals enhanced the simple visual features represented in the early visual cortices. By contrast, the elimination of the bottom-up signals enhanced the complex visual features represented in the higher visual cortices. The directions of such modulation effects varied across visual perception/imagery tasks, indicating that the information flow across the visual cortices is dynamically altered, reflecting the contents of visual processing. These results demonstrated that the distillation approach is a useful tool to estimate the hidden content of information conveyed across brain regions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Antonia Klein ◽  
Christoph J. Schankin

Aim: By reviewing the existing clinical studies about visual snow (VS) as a symptom or as part of visual snow syndrome (VSS), we aim at improving our understanding of VSS being a network disorder.Background: Patients with VSS suffer from a continuous visual disturbance resembling the view of a badly tuned analog television (i.e., VS) and other visual, as well as non-visual symptoms. These symptoms can persist over years and often strongly impact the quality of life. The exact prevalence is still unknown, but up to 2.2% of the population could be affected. Presently, there is no established treatment, and the underlying pathophysiology is unknown. In recent years, there have been several approaches to identify the brain areas involved and their interplay to explain the complex presentation.Methods: We collected the clinical and paraclinical evidence from the currently published original studies on VS and its syndrome by searching PubMed and Google Scholar for the term visual snow. We included original studies in English or German and excluded all reviews, case reports that did not add new information to the topic of this review, and articles that were not retrievable in PubMed or Google Scholar. We grouped the studies according to the methods that were used.Results: Fifty-three studies were found for this review. In VSS, the clinical spectrum includes additional visual disturbances such as excessive floaters, palinopsia, nyctalopia, photophobia, and entoptic phenomena. There is also an association with other perceptual and affective disorders as well as cognitive symptoms. The studies that have been included in this review demonstrate structural, functional, and metabolic alterations in the primary and/or secondary visual areas of the brain. Beyond that, results indicate a disruption in the pre-cortical visual pathways and large-scale networks including the default mode network and the salience network.Discussion: The combination of the clinical picture and widespread functional and structural alterations in visual and extra-visual areas indicates that the VSS is a network disorder. The involvement of pre-cortical visual structures and attentional networks might result in an impairment of “filtering” and prioritizing stimuli as top-down process with subsequent excessive activation of the visual cortices when exposed to irrelevant external and internal stimuli. Limitations of the existing literature are that not all authors used the ICHD-3 definition of the VSS. Some were referring to the symptom VS, and in many cases, the control groups were not matched for migraine or migraine aura.


2021 ◽  
Vol 21 (9) ◽  
pp. 2053
Author(s):  
Panagiotis Sapountzis ◽  
Sofia Paneri ◽  
Sotirios Papadopoulos ◽  
Georgia Gregoriou

2021 ◽  
Author(s):  
Elizabeth Musz ◽  
Rita Loiotile ◽  
Janice Chen ◽  
Rhodri Cusack ◽  
Marina Bedny

AbstractHow do life experiences impact cortical function? In people who are born blind, the “visual” cortices are recruited for nonvisual tasks such as Braille reading and sound localization (e.g., Collignon et al., 2011; Sadato et al., 1996). The mechanisms of this recruitment are not known. Do visual cortices have a latent capacity to respond to nonvisual information that is equal throughout the lifespan? Alternatively, is there a sensitive period of heightened plasticity that makes visual cortex repurposing possible during childhood? To gain insight into these questions, we leveraged naturalistic auditory stimuli to quantify and compare cross-modal responses congenitally blind (CB, n=22), adult-onset blind (vision loss >18 years-of-age, AB, n=14) and sighted (n=22) individuals. Participants listened to auditory excerpts from movies; a spoken narrative; and matched meaningless auditory stimuli (i.e., shuffled sentences, backwards speech) during fMRI scanning. These rich naturalistic stimuli made it possible to simultaneous engage a broad range of cognitive domains. We correlated the voxel-wise timecourses of different participants within each group. For all groups, all stimulus conditions induced synchrony in auditory cortex and for all groups only the narrative stimuli synchronized responses in higher-cognitive fronto-parietal and temporal regions. Inter-subject synchrony in visual cortices was high in the CB group for the movie and narrative stimuli but not for meaningless auditory controls. In contrast, visual cortex synchrony was equally low among AB and sighted blindfolded participants. Even many years of blindness in adulthood fail to enable responses to naturalistic auditory information in visual cortices of people who had sight as children. These findings suggest that cross-modal responses in visual cortex of people born blind reflect the plasticity of developing visual cortex during a sensitive period.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wuzeng Wei ◽  
Tao Wang ◽  
Tuersong Abulizi ◽  
Bing Li ◽  
Jun Liu

Background: Changes in regional neural activity and functional connectivity in cervical spondylotic myelopathy (CSM) patients have been reported. However, resting-state cerebral blood flow (CBF) changes and coupling between CBF and functional connectivity in CSM patients are largely unknown.Methods: Twenty-seven CSM patients and 24 sex/age-matched healthy participants underwent resting-state functional MRI and arterial spin labeling imaging to compare functional connectivity strength (FCS) and CBF between the two groups. The CBF–FCS coupling of the whole gray matter and specific regions of interest was also compared between the groups.Results: Compared with healthy individuals, CBF–FCS coupling was significantly lower in CSM patients. The decrease in CBF–FCS coupling in CSM patients was observed in the superior frontal gyrus, bilateral thalamus, and right calcarine cortex, whereas the increase in CBF–FCS coupling was observed in the middle frontal gyrus. Moreover, low CBF and high FCS were observed in sensorimotor cortices and visual cortices, respectively.Conclusion: In general, neurovascular decoupling at cortical level may be a potential neuropathological mechanism of CSM.


2021 ◽  
Author(s):  
John D Lewis ◽  
Christian O’Reilly ◽  
Elizabeth Bock ◽  
Rebecca J Theilmann ◽  
Jeanne Townsend

Abstract There is substantial evidence of age-related declines in anatomical connectivity during adulthood, with associated alterations in functional connectivity. But the relation of those functional alterations to the structural reductions is unclear. The complexities of both the structural and the functional connectomes make it difficult to determine such relationships. We pursue this question with methods, based on animal research, that specifically target the interhemispheric connections between the visual cortices. We collect t1- and diffusion-weighted imaging data from which we assess the integrity of the white matter interconnecting the bilateral visual cortices. Functional connectivity between the visual cortices is measured with electroencephalography during the presentation of drifting sinusoidal gratings that agree or conflict across hemifields. Our results show age-related reductions in the integrity of the white matter interconnecting the visual cortices, and age-related increases in the difference in functional interhemispheric lagged coherence between agreeing versus disagreeing visual stimuli. We show that integrity of the white matter in the splenium of the corpus callosum predicts the differences in lagged coherence for the agreeing versus disagreeing stimuli; and that this relationship is mediated by age. These results give new insight into the causal relationship between age and functional connectivity.


Sign in / Sign up

Export Citation Format

Share Document