viral restriction
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 29)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Moritz Schüssler ◽  
Paula Rauch ◽  
Kerstin Schott ◽  
Adrian Oo ◽  
Nina Verena Fuchs ◽  
...  

Sterile α motif (SAM) and HD domain-containing protein 1 (SAMHD1) is a potent restriction factor for immunodeficiency virus 1 (HIV-1), active in myeloid and resting CD4+ T cells. As a dNTP triphosphate triphosphohydrolase (dNTPase), SAMHD1 is proposed to limit cellular dNTP levels correlating with inhibition of HIV-1 reverse transcription. The anti-viral activity of SAMHD1 is regulated by dephosphorylation of the residue T592. However, the impact of T592 phosphorylation on dNTPase activity is still under debate. Whether additional cellular functions of SAMHD1 impact anti-viral restriction is also not completely understood. We use BlaER1 cells as a novel human macrophage transdifferentiation model combined with CRISPR/Cas9 knock-in (KI) to study SAMHD1 mutations in a physiological context. Transdifferentiated BlaER1 cells, resembling primary human macrophages, harbor active dephosphorylated SAMHD1 that blocks HIV-1 reporter virus infection. Co-delivery of Vpx or CRISPR/Cas9-mediated SAMHD1 knock-out relieves the block to HIV-1. Using CRISPR/Cas9-mediated homologous recombination, we introduced specific mutations into the genomic SAMHD1 locus. Homozygous T592E mutation, but not T592A, leads to loss of HIV-1 restriction, confirming the role of T592 dephosphorylation in the regulation of anti-viral activity. However, T592E KI cells retain wild type dNTP levels, suggesting the antiviral state might not only rely on dNTP depletion. In conclusion, the role of the T592 phospho-site for anti-viral restriction was confirmed in an endogenous physiological context. Importantly, loss of restriction in T592E mutant cells does not correlate with increased dNTP levels, indicating that the regulation of anti-viral and dNTPase activity of SAMHD1 might be uncoupled.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Liu ◽  
Feng-Zhen Meng ◽  
Xu Wang ◽  
Peng Wang ◽  
Jin-Biao Liu ◽  
...  

Abstract Background Methamphetamine (METH), a potent addictive psychostimulant, is highly prevalent in HIV-infected individuals. Clinically, METH use is implicated in alteration of immune system and increase of HIV spread/replication. Therefore, it is of importance to examine whether METH has direct effect on HIV infection of monocytes, the major target and reservoir cells for the virus. Results METH-treated monocytes were more susceptible to HIV infection as evidenced by increased levels of viral proteins (p24 and Pr55Gag) and expression of viral GAG gene. In addition, using HIV Bal with luciferase reporter gene (HIV Bal-eLuc), we showed that METH-treated cells expressed higher luciferase activities than untreated monocytes. Mechanistically, METH inhibited the expression of IFN-λ1, IRF7, STAT1, and the antiviral IFN-stimulated genes (ISGs: OAS2, GBP5, ISG56, Viperin and ISG15). In addition, METH down-regulated the expression of the HIV restriction microRNAs (miR-28, miR-29a, miR-125b, miR-146a, miR-155, miR-223, and miR-382). Conclusions METH compromises the intracellular anti-HIV immunity and facilitates HIV replication in primary human monocytes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Charlotte Martinat ◽  
Arthur Cormier ◽  
Joëlle Tobaly-Tapiero ◽  
Noé Palmic ◽  
Nicoletta Casartelli ◽  
...  

AbstractSAMHD1 is a cellular triphosphohydrolase (dNTPase) proposed to inhibit HIV-1 reverse transcription in non-cycling immune cells by limiting the supply of the dNTP substrates. Yet, phosphorylation of T592 downregulates SAMHD1 antiviral activity, but not its dNTPase function, implying that additional mechanisms contribute to viral restriction. Here, we show that SAMHD1 is SUMOylated on residue K595, a modification that relies on the presence of a proximal SUMO-interacting motif (SIM). Loss of K595 SUMOylation suppresses the restriction activity of SAMHD1, even in the context of the constitutively active phospho-ablative T592A mutant but has no impact on dNTP depletion. Conversely, the artificial fusion of SUMO2 to a non-SUMOylatable inactive SAMHD1 variant restores its antiviral function, a phenotype that is reversed by the phosphomimetic T592E mutation. Collectively, our observations clearly establish that lack of T592 phosphorylation cannot fully account for the restriction activity of SAMHD1. We find that SUMOylation of K595 is required to stimulate a dNTPase-independent antiviral activity in non-cycling immune cells, an effect that is antagonized by cyclin/CDK-dependent phosphorylation of T592 in cycling cells.


2021 ◽  
Author(s):  
Mathew Clement ◽  
Jessica L Forbester ◽  
Morgan Marsden ◽  
Pragati Sabberwal ◽  
Dannielle Wellington ◽  
...  

Interferon induced transmembrane protein 3 (IFITM3) is an important viral restriction factor in viral pathogenesis that also exhibits poorly understood immune regulatory functions. Here, using human and mouse models, we demonstrate that IFITM3 regulates MyD88-dependent TLR-mediated cytokine production following dendritic cell exposure to cytomegalovirus (CMV), and this process limits viral pathogenesis in vivo. IFITM3 also restricted pro-inflammatory (IL-6) cytokine production in response to influenza. IFITM3 bound to and promoted ubiquitination and proteasomal degradation of the reticulon 4 isoform Nogo-B. We reveal that Nogo-B mediates TLR-dependent pro-inflammatory cytokine production and promotes viral pathogenesis in vivo, and this process involved alteration of TLR dynamics. The anti-inflammatory function of IFITM3 was intrinsically linked to its ability to regulate Nogo-B. Thus, we uncover Nogo-B as an unappreciated driver of viral pathogenesis and highlight a novel immune regulatory pathway where IFITM3 fine-tunes TLR responsiveness of myeloid cells to viral stimulation.


2021 ◽  
Author(s):  
Yu Liu ◽  
Fengzhen Meng ◽  
xu wang ◽  
Jinbiao Liu ◽  
Peng Wang ◽  
...  

Abstract Background Methamphetamine (METH), a potent addictive psychostimulant, is highly prevalent in HIV-infected individuals. Clinically, METH use is implicated in alteration of immune system and increase of HIV spread/replication. Therefore, it is of importance to examine whether METH has direct effect on HIV infection of monocytes, the major target and reservoir cells for the virus. Result METH-treated monocytes were more susceptible to HIV infection as evidenced by increased levels of viral p24 protein and expression of viral GAG gene. Mechanistically, METH treatment of monocytes inhibited the expression of the antiviral IFN-stimulated genes (ISGs: OAS2, GBP5, ISG56, Viperin and ISG15) and the HIV restriction microRNAs. In addition, METH treatment of monocytes significantly decreased STAT1 expression at both mRNA and protein levels. Conclusions These findings suggest a previously unrecognized mechanism for HIV persistent infection in the primary target and reservoir cells.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 497
Author(s):  
Xiaojiang S. Chen

Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single-stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is more complicated than others, due to the associated complex RNA binding modes.


2021 ◽  
Author(s):  
Adrien Presle ◽  
Stéphane Frémont ◽  
Audrey Salles ◽  
Pierre-Henri Commere ◽  
Nathalie Sassoon ◽  
...  

2021 ◽  
Author(s):  
Daniel L Faden ◽  
Krystle A. Lang Kuhs ◽  
Maoxuan Lin ◽  
Adam Langenbucher ◽  
Maisa Pinheiro ◽  
...  

AbstractAPOBEC (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like) is a major mutagenic source in human papillomavirus positive oropharyngeal squamous cell carcinoma (HPV+ OPSCC). Why APOBEC mutations predominate in HPV+OPSCC remains an area of active investigation. Prevailing theories focus on APOBECs role as a viral restriction agent. APOBEC-induced mutations have been identified in both human cancers and HPV genomes, but whether they are directly linked in HPV+OPSCCs remains unknown. We performed sequencing of host somatic exomes, transcriptomes and HPV16 genomes from 79 HPV+ OPSCC samples, quantifying APOBEC mutational burden and activity in both the host and virus. APOBEC was the dominant mutational signature in somatic exomes. APOBEC vulnerable PIK3CA hotspot mutations were exclusively present in APOBEC enriched samples. In viral genomes, there was a mean (range) of 5 (0-29) mutations per genome. Mean (range) of APOBEC mutations in the viral genomes was 1 (0-5). Viral APOBEC mutations, compared to non-APOBEC mutations, were more likely to be low-variant allele frequency mutations, suggesting that APOBEC mutagenesis is actively occurring in viral genomes during infection. Paired host and viral analyses revealed that APOBEC-enriched tumor samples had higher viral APOBEC mutation rates (p=0.028), and APOBEC-associated RNA editing (p=0.008) suggesting that APOBEC mutagenesis in host and viral genomes are directly linked. Using paired sequencing of host somatic exomes, transcriptomes, and viral genomes from HPV+OPSCC samples, here, we show concordance between tumor and viral APOBEC mutagenesis, suggesting that APOBEC-mediated viral restriction results in off-target host-genome mutations. These data provide a missing link connecting APOBEC mutagenesis in host and virus and support a common mechanism driving APOBEC dysregulation.


EMBO Reports ◽  
2020 ◽  
Author(s):  
Minghua Nie ◽  
Martina Oravcová ◽  
Yasaman Jami‐Alahmadi ◽  
James A Wohlschlegel ◽  
Eros Lazzerini‐Denchi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document