collapsible soils
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 36)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 961 (1) ◽  
pp. 012050
Author(s):  
Makki K. Mohsen ◽  
Qasim A. Al-Obaidi ◽  
Ayad O. Asker

Abstract Collapsible soils are problematic soils that have substantial strength while dry but lose strength when wet, resulting in excessive settlements. Soil collapse occurs when increasing moisture weakens chemical or physical connections between soil particles, allowing the soil structure to collapse. The existence of these soils, often with significant gypsum concentration, created serious challenges for structures and major projects. The primary goal of this study is to conduct a series of model tests subjected to static vertical stress to assess the ability of soil stabilization using geosynthetics material by employing single, double, and triple geotextile layers put at various places. A unique model test configuration was employed for this testing. The gypseous soil used was brought from near Sawa Lake by coordinates (31◦18′42.83″N, 45◦00′49.36″E) in Al-Muthanna Governorate. The gypsum content was more than (37%). It was found that, the ultimate bearing capacity of dry and wet gypseous soil models had been determined by using Two Tangent Intersection technique. The results show the Settlement Reduction Factor (SRF) % and the ratio of decreasing the collapse magnitude (Δed )


Author(s):  
Breno Padovezi Rocha ◽  
André Luís de Carvalho Rodrigues ◽  
Roger Augusto Rodrigues ◽  
Heraldo Luiz Giacheti
Keyword(s):  

2021 ◽  
Vol 44 (4) ◽  
pp. 1-10
Author(s):  
Moisés Lemos ◽  
Lucas Guimarães ◽  
André Cavalcante

Several regions in Brazil and the world suffer from the presence of collapsible soils. The development of theories for understanding the phenomenon is significant because the increase of water content is associated with several reasons (e.g., precipitation, rupture of sewage, and water systems). Although some theories explain the behavior of various types of soils, they fail to explain collapsible and structured soils. In this research, an alternative interpretation of the consolidation theory is verified and calibrated for collapsible soil. The alternative model was applied to experimental data from a latosol from southeastern Brazil, and comparisons with the classical theory showed a difference in the saturated hydraulic conductivity of around 100 times. The observation showed promising results compared with the saturated hydraulic conductivity of the field (Guelph Permeameter). Furthermore, consolidation tests verified the collapse potential, the variation of consolidation coefficient and saturated hydraulic conductivity, and the total settlement prevision due to the presence of bleach and washing powder.


Author(s):  
Fatemeh Sabbaqzade ◽  
Mohsen Keramati ◽  
Hossein Moradi Moghaddam ◽  
Pouria Hamidian

2021 ◽  
Vol 7 (9) ◽  
pp. 1594-1607
Author(s):  
Abdul Waheed ◽  
Muhammad Usman Arshid ◽  
Raja Abubakar Khalid ◽  
Syed Shujaa Safdar Gardezi

The soils which show very high shear strength in a dry state but rapidly lose their strength on wetting are known as collapsible soils. Such rapid and massive loss of strength produces severe distress leading to extensive cracking and differential settlements, instability of building foundations, and even collapse of structures built on these soils. Waste marble dust is an industrial byproduct and is being produced in large quantities globally poses an environmental hazard. Therefore, it is of the utmost need to look for some sustainable solution for its disposal. The present study focused on the mitigation of the collapse potential of CL-ML soil through a physio-chemical process. The soil is sensitive to wetting, warranting its stabilization. Waste marble dust (WMD) in varying percentages was used as an admixture. The study's optimization process showed that geotechnical parameters of collapsible soil improved substantially by adding waste marble dust. Plasticity was reduced while Unconfined Compressive Strength (UCS) significantly increased while swelling was reduced to an acceptable limit. The California Bearing Ratio (CBR) also exhibits considerable improvement. This study appraises the safe disposal of hazardous waste safely and turns these into suitable material for engineering purposes. Doi: 10.28991/cej-2021-03091746 Full Text: PDF


2021 ◽  
Vol 44 (3) ◽  
pp. 1-30
Author(s):  
Sandra Houston ◽  
Xiong Zhang

Numerous laboratory tests on unsaturated soils revealed complex volume-change response to reduction of soil suction, resulting in early development of state surface approaches that incorporate soil expansion or collapse due to wetting under load. Nonetheless, expansive and collapsible soils are often viewed separately in research and practice, resulting in development of numerous constitutive models specific to the direction of volume change resulting from suction decrease. In addition, several elastoplastic models, developed primarily for collapse or expansion, are modified by add-on, such as multiple yield curves/surfaces, to accommodate a broader range of soil response. Current tendency to think of unsaturated soils as either expansive or collapsible (or, sometimes, stable), has likely contributed to lack of development of a unified approach to unsaturated soil volume change. In this paper, common research and practice approaches to volume change of unsaturated soils are reviewed within a simple macro-level elastoplastic framework, the Modified State Surface Approach (MSSA). The MSSA emerges as a unifying approach that accommodates complex volume change response of unsaturated soil, whether the soil exhibits collapse, expansion, or both. Suggestions are made for minor adjustments to existing constitutive models from this review, typically resulting in simplification and/or benefit to some of the most-used constitutive models for unsaturated soil volume change. In the review of practice-based approaches, the surrogate path method (SPM), an oedometer/suction-based approach, is demonstrated to be consistent with the MSSA framework, broadly applicable for use with expansive and collapsible soils, and yielding results consistent with measured field stress-path soil response.


Sign in / Sign up

Export Citation Format

Share Document