surface integral equation
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 44)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Hande Ibili ◽  
Yesim Koyaz ◽  
Utku Ozmu ◽  
Bariscan Karaosmanoglu ◽  
Ozgur Ergul

Abstract We consider accurate and iteratively efficient solutions of electromagnetic problems involving homogenized near-zero-index (NZI) bodies using surface-integral-equation formulations in frequency domain. NZI structures can be practically useful in a plethora of optical applications, as they possess near-zero permittivity and/or permeability values that cannot be found in nature. Hence, numerical simulations are of utmost importance for rigorous design and analyses of NZI structures. Unfortunately, small values of electromagnetic parameters bring computational challenges in numerical solutions of homogeneous models. Conventional formulations available in the literature encounter stability issues that make them inaccurate and/or inefficient as permittivity and/or permeability approach zero. We propose a novel formulation that involves a well-balanced combination of operators and that can provide both accurate and efficient solutions of all NZI cases. Numerical results are presented to demonstrate the superior properties of the developed formulation in comparison to the conventional ones.


2021 ◽  
Vol 36 (6) ◽  
pp. 642-649
Author(s):  
Jinbo Liu ◽  
Hongyang Chen ◽  
Hui Zhang ◽  
Jin Yuan ◽  
Zengrui Li

To efficiently analyze the electromagnetic scattering from composite perfect electric conductor (PEC)-dielectric objects with coexisting closed-open PEC junctions, a modified hybrid integral equation (HIE) is established as the surface integral equation (SIE) part of the volume surface integral equation (VSIE), which employs the combined field integral equation (CFIE) and the electric field integral equation (EFIE) on the closed and open PEC surfaces, respectively. Different from the traditional HIE modeled for the objects whose closed and open PEC surfaces are strictly separate, the modified HIE can be applied to the objects containing closed-open junctions. A matrix equation is obtained by using the Galerkin’s method of moments (MoM), which is augmented with the spherical harmonics expansion-based multilevel fast multipole algorithm (SE-MLFMA), improved by the mixed-potential representation and the triangle/tetrahedron-based grouping scheme. Because in the improved SE-MLFMA, the memory usage for storing the radiation patterns of basis functions is independent of the SIE type in the VSIE, it is highly appropriate for the fast solution of the VSIE that contains the HIE. Various numerical experiments demonstrate that during the calculation of composite objects containing closed-open PEC junctions, the application of the modified HIE in the VSIE can give reliable results with fast convergence speed.


2021 ◽  
Vol 35 (11) ◽  
pp. 1408-1409
Author(s):  
Jon Kelley ◽  
Andrew Maicke ◽  
David Chamulak ◽  
Clifton Courtney ◽  
Ali Yilmaz

A full-size airplane model (the EXPEDITE-RCS model) was developed as part of a benchmark suite for evaluating radar-cross-section (RCS) prediction methods. To generate accurate reference data for the benchmark problems formulated using the model, scale-model targets were additively manufactured, their material properties and RCS were measured, and the measurements were validated with a surface-integral-equation solver. To enable benchmarking of as many computational methods as possible, the following data are made available in a version-controlled online repository: (1) Exterior surface (outer mold line) of the CAD model in two standard file formats. (2) Triangular surface meshes. (3) Measured and predicted monostatic RCS data.


2021 ◽  
Vol 35 (11) ◽  
pp. 1264-1265
Author(s):  
John Young ◽  
Robert Adams ◽  
Stephen Gedney

In this paper, a nonlinear electrostatic surface integral equation is presented that is suitable for predicting corrosion-related fields. Nonlinear behavior arises due to electrochemical reactions at polarized surfaces. Hierarchical H2 matrices are used to compress the discretized integral equation for the fast solution of large problems. A technique based on randomized linear algebra is discussed for the efficient computation of the Jacobian matrix required at each iteration of a nonlinear solution.


Sign in / Sign up

Export Citation Format

Share Document