ct image reconstruction
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 95)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
pp. 1-13
Author(s):  
Lei Shi ◽  
Gangrong Qu ◽  
Yunsong Zhao

BACKGROUND: Ultra-limited-angle image reconstruction problem with a limited-angle scanning range less than or equal to π 2 is severely ill-posed. Due to the considerably large condition number of a linear system for image reconstruction, it is extremely challenging to generate a valid reconstructed image by traditional iterative reconstruction algorithms. OBJECTIVE: To develop and test a valid ultra-limited-angle CT image reconstruction algorithm. METHODS: We propose a new optimized reconstruction model and Reweighted Alternating Edge-preserving Diffusion and Smoothing algorithm in which a reweighted method of improving the condition number is incorporated into the idea of AEDS image reconstruction algorithm. The AEDS algorithm utilizes the property of image sparsity to improve partially the results. In experiments, the different algorithms (the Pre-Landweber, AEDS algorithms and our algorithm) are used to reconstruct the Shepp-Logan phantom from the simulated projection data with noises and the flat object with a large ratio between length and width from the real projection data. PSNR and SSIM are used as the quantitative indices to evaluate quality of reconstructed images. RESULTS: Experiment results showed that for simulated projection data, our algorithm improves PSNR and SSIM from 22.46db to 39.38db and from 0.71 to 0.96, respectively. For real projection data, our algorithm yields the highest PSNR and SSIM of 30.89db and 0.88, which obtains a valid reconstructed result. CONCLUSIONS: Our algorithm successfully combines the merits of several image processing and reconstruction algorithms. Thus, our new algorithm outperforms significantly other two algorithms and is valid for ultra-limited-angle CT image reconstruction.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1873
Author(s):  
Yanfeng Shen ◽  
Shuli Sun ◽  
Fengsheng Xu ◽  
Yanqin Liu ◽  
Xiuling Yin ◽  
...  

X-ray computed tomography (CT) is widely used in medical applications, where many efforts have been made for decades to eliminate artifacts caused by incomplete projection. In this paper, we propose a new CT image reconstruction model based on nonlocal low-rank regularity and data-driven tight frame (NLR-DDTF). Unlike the Spatial-Radon domain data-driven tight frame regularization, the proposed NLR-DDTF model uses an asymmetric treatment for image reconstruction and Radon domain inpainting, which combines the nonlocal low-rank approximation method for spatial domain CT image reconstruction and data-driven tight frame-based regularization for Radon domain image inpainting. An alternative direction minimization algorithm is designed to solve the proposed model. Several numerical experiments and comparisons are provided to illustrate the superior performance of the NLR-DDTF method.


2021 ◽  
Author(s):  
Masaki Ikuta

<div><div><div><p>Many algorithms and methods have been proposed for Computed Tomography (CT) image reconstruction, partic- ularly with the recent surge of interest in machine learning and deep learning methods. The majority of recently proposed methods are, however, limited to the image domain processing where deep learning is used to learn the mapping from a noisy image data set to a true image data set. While deep learning-based methods can produce higher quality images than conventional model-based post-processing algorithms, these methods have lim- itations. Deep learning-based methods used in the image domain are not sufficient for compensating for lost information during a forward and a backward projection in CT image reconstruction especially with a presence of high noise. In this paper, we propose a new Recurrent Neural Network (RNN) architecture for CT image reconstruction. We propose the Gated Momentum Unit (GMU) that has been extended from the Gated Recurrent Unit (GRU) but it is specifically designed for image processing inverse problems. This new RNN cell performs an iterative optimization with an accelerated convergence. The GMU has a few gates to regulate information flow where the gates decide to keep important long-term information and discard insignificant short- term detail. Besides, the GMU has a likelihood term and a prior term analogous to the Iterative Reconstruction (IR). This helps ensure estimated images are consistent with observation data while the prior term makes sure the likelihood term does not overfit each individual observation data. We conducted a synthetic image study along with a real CT image study to demonstrate this proposed method achieved the highest level of Peak Signal to Noise Ratio (PSNR) and Structure Similarity (SSIM). Also, we showed this algorithm converged faster than other well-known methods.</p></div></div></div>


2021 ◽  
Author(s):  
Masaki Ikuta

<div><div><div><p>Many algorithms and methods have been proposed for Computed Tomography (CT) image reconstruction, partic- ularly with the recent surge of interest in machine learning and deep learning methods. The majority of recently proposed methods are, however, limited to the image domain processing where deep learning is used to learn the mapping from a noisy image data set to a true image data set. While deep learning-based methods can produce higher quality images than conventional model-based post-processing algorithms, these methods have lim- itations. Deep learning-based methods used in the image domain are not sufficient for compensating for lost information during a forward and a backward projection in CT image reconstruction especially with a presence of high noise. In this paper, we propose a new Recurrent Neural Network (RNN) architecture for CT image reconstruction. We propose the Gated Momentum Unit (GMU) that has been extended from the Gated Recurrent Unit (GRU) but it is specifically designed for image processing inverse problems. This new RNN cell performs an iterative optimization with an accelerated convergence. The GMU has a few gates to regulate information flow where the gates decide to keep important long-term information and discard insignificant short- term detail. Besides, the GMU has a likelihood term and a prior term analogous to the Iterative Reconstruction (IR). This helps ensure estimated images are consistent with observation data while the prior term makes sure the likelihood term does not overfit each individual observation data. We conducted a synthetic image study along with a real CT image study to demonstrate this proposed method achieved the highest level of Peak Signal to Noise Ratio (PSNR) and Structure Similarity (SSIM). Also, we showed this algorithm converged faster than other well-known methods.</p></div></div></div>


Medicine ◽  
2021 ◽  
Vol 100 (19) ◽  
pp. e25814
Author(s):  
Ji Eun Lee ◽  
Seo-Youn Choi ◽  
Jeong Ah Hwang ◽  
Sanghyeok Lim ◽  
Min Hee Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document