pisco formation
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 9 (11) ◽  
pp. 1188
Author(s):  
Alberto Collareta ◽  
Olivier Lambert ◽  
Felix G. Marx ◽  
Christian de Muizon ◽  
Rafael Varas-Malca ◽  
...  

The northward-flowing Humboldt Current hosts perpetually high levels of productivity along the western coast of South America. Here, we aim to elucidate the deep-time history of this globally important ecosystem based on a detailed palaeoecological analysis of the exceptionally preserved middle–upper Miocene vertebrate assemblages of the Pisco Formation of the East Pisco Basin, southern Peru. We summarise observations on hundreds of fossil whales, dolphins, seals, seabirds, turtles, crocodiles, sharks, rays, and bony fishes to reconstruct ecological relationships in the wake of the Middle Miocene Climatic Optimum, and the marked cooling that followed it. The lowermost, middle Miocene Pisco sequence (P0) and its vertebrate assemblage testify to a warm, semi-enclosed, near-shore palaeoenvironment. During the first part of the Tortonian (P1), high productivity within a prominent upwelling system supported a diverse assemblage of mesopredators, at least some of which permanently resided in the Pisco embayment and used it as a nursery or breeding/calving area. Younger portions of the Pisco Formation (P2) reveal a more open setting, with wide-ranging species like rorquals increasingly dominating the vertebrate assemblage, but also local differences reflecting distance from the coast. Like today, these ancient precursors of the modern Humboldt Current Ecosystem were based on sardines, but notably differed from their present-day equivalent in being dominated by extremely large-bodied apex predators like Livyatan melvillei and Carcharocles megalodon.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254395
Author(s):  
Giulia Bosio ◽  
Alberto Collareta ◽  
Claudio Di Celma ◽  
Olivier Lambert ◽  
Felix G. Marx ◽  
...  

The Miocene Pisco Formation, broadly exposed in the Ica Desert of southern Peru, is among the most outstanding Cenozoic marine Fossil-Lagerstätten worldwide. It is renowned for its exceptional preservation and abundance of vertebrate fossils, including a rich assemblage of whales and dolphins (Cetacea). Here, we integrate taphonomic data on 890 marine vertebrate fossils, gathered through 16 different localities. Our observations range from the taxonomic distribution, articulation, completeness, disposition and orientation of skeletons, to the presence of bite marks, associations with shark teeth and macro-invertebrates, bone and soft tissue preservation, and the formation of attendant carbonate concretions and sedimentary structures. We propose that the exceptional preservation characterising many Pisco vertebrates, as well as their exceptionally high abundance, cannot be ascribed to a single cause like high sedimentation rates (as proposed in the past), but rather to the interplay of several favourable factors including: (i) low levels of dissolved oxygen at the seafloor (with the intervention of seasonal anoxic events); (ii) the early onset of mineralisation processes like apatite dissolution/recrystallisation and carbonate mineral precipitation; (iii) rapid burial of carcasses in a soupy substrate and/or a novel mechanism involving scour-induced self-burial; and (iv) original biological richness. Collectively, our observations provide a comprehensive overview of the taphonomic processes that shaped one of South America’s most important fossil deposits, and suggest a model for the formation of other marine vertebrate Fossil-Lagerstätten.


Author(s):  
Giulia BOSIO ◽  
Valentina A. BRACCHI ◽  
Elisa MALINVERNO ◽  
Alberto COLLARETA ◽  
Giovanni COLETTI ◽  
...  

Invertebrate taphonomy can provide significant information about the post-mortem processes that affected the fossil record. In the East Pisco Basin of southern Peru, a Panopea Ménard de la Groye, 1807 shell bed was found in the upper Miocene strata of the Pisco Formation, hinting at a peculiar biostratinomic and diagenetic history. This bed contains abundant invertebrate fossil molds cemented by dolomite. The specimens of the deep infaunal bivalve, Panopea sp., occur together with bivalves representative of shallow infaunal species (Trachycardium sp. and Dosinia ponderosa [Gray, 1838]) and balanid barnacles, which are sessile encrusters. The Panopea specimens host compound molds evidencing an abundant encrusting fauna, including serpulids, ?foraminifera, bryozoans, and barnacles that colonized the inner surfaces of the valves before their final burial. We hypothesize that short-term, storm-related processes exhumed the living bivalves, resulting in a sedimentological concentration of relatively well-preserved shells. After the death of the exhumed bivalves, the inner surfaces of the articulated Panopea shells, representing hard-substratal, sheltered environments on an otherwise unstable sandy seafloor (i.e., “benthic islands”), were colonized by different encrusting organisms. Following the final burial, dolomite precipitated, cementing the sediment infill of the valves. Lastly, a decrease of pH occurred at the sulfate reduction-methanogenesis boundary, inducing the dissolution of the shell carbonate.


2021 ◽  
Author(s):  
Aldo Benites‐Palomino ◽  
Jorge Vélez‐Juarbe ◽  
Alberto Collareta ◽  
Diana Ochoa ◽  
Ali Altamirano ◽  
...  

Author(s):  
Alberto COLLARETA ◽  
Olivier LAMBERT ◽  
Christian de MUIZON ◽  
Aldo Marcelo BENITES PALOMINO ◽  
Mario URBINA ◽  
...  

Nowadays, the odontocete family Kogiidae is monotypic and only includes two species of diminutive relatives of the great sperm whale Physeter Linnaeus, 1758. Conversely, a growing body of extinct species indicates that kogiids were diverse and disparate during the late Neogene. The fossil record of Kogiidae is, to date, represented by several cranial specimens from Mio-Pliocene localities of the Northern Hemisphere, with the significant Southern Hemisphere exception of the Pisco Formation of Peru, from which two genera were known so far, including Scaphokogia Muizon, 1988, a highly idiosyncratic form characterised by a distinctly spoon-shaped dorsal surface of the neurocranium and a downturned semicylindrical rostrum, which is even placed in its own subfamily Scaphokogiinae. Here, we report on two skulls of Kogiidae from the Messinian (upper Miocene) portion of the Pisco Formation exposed in the East Pisco Basin. These two skulls are referred to the new taxon Platyscaphokogia landinii n. gen., n. sp., which our phylogenetic analysis recovers as sister group of Scaphokogia, within the subfamily Scaphokogiinae. Although Platyscaphokogia n. gen. shares with Scaphokogia a remarkably spoon-like dorsal aspect of the neurocranium, it retains a non-pachyostotic, dorsoventrally thin rostrum that distinctly points anteriorly; as such, Platyscaphokogia n. gen. might be regarded as testifying an early stage in the evolution of the scaphokogiine cranial anatomy. Morphofunctional and palaeoecological considerations allow for hypothesising that Platyscaphokogia n. gen. was a raptorial physeteroid that foraged along the water column in relatively open-sea palaeoenvironments. In conclusion, our finds expand the palaeodiversity of Kogiidae, as well as our knowledge on the late Miocene sperm whales of the southeastern Pacific, and further suggest that the fossil content of the East Pisco Basin is crucial for reconstructing the Neogene evolutionary history of physeteroids.


2020 ◽  
Vol 30 (1) ◽  
pp. 1
Author(s):  
Raúl Esperante ◽  
Orlando Poma

Two mysticete fossil whales from the upper Miocene of the Pisco Formation in Peru are described that show healed bone-fractures in ribs. One specimen is preserved in a tuffaceous diatomaceous siltstone and the other specimen is preserved in siltstone. Both specimens are well preserved, mostly articulated and almost complete. Shark teeth were found associated with one of the skeletons, but both specimens lack any trace evidence for the activity macro-scavengers. We suggest that the cause of bone fracture may have been collision with rocky shores, other wales, or large predators. The fact that the rib fractures healed indicates that the whales did not die due the bone fractures. Sedimentologic and paleontological evidence indicate that they were rapidly buried in the marine platform with well-oxygenated water


2018 ◽  
Vol 14 (2) ◽  
pp. 607-619 ◽  
Author(s):  
Claudio Di Celma ◽  
Elisa Malinverno ◽  
Giulia Bosio ◽  
Karen Gariboldi ◽  
Alberto Collareta ◽  
...  

2018 ◽  
Vol 176 (1) ◽  
pp. 13-28 ◽  
Author(s):  
Giulia Bosio ◽  
Anna Gioncada ◽  
Elisa Malinverno ◽  
Claudio Di Celma ◽  
Igor M. Villa ◽  
...  

2018 ◽  
Vol 45 (3) ◽  
pp. 379 ◽  
Author(s):  
Anna Gioncada ◽  
Karen Gariboldi ◽  
Alberto Collareta ◽  
Claudio Di Celma ◽  
Giulia Bosio ◽  
...  

The upper Neogene Pisco Formation of Peru is known worldwide as one of the most significant Cenozoic marine vertebrate Konservatt-Lagerstätten, even featuring cetacean specimens that retain remains of soft tissues or stomach contents. Previous works showed that biomediated precipitation of dolomite concretions around large-sized decaying carcasses was one of the most relevant processes responsible for exceptional fossil preservation. In turn, little is known about the modes of fossilization of well-preserved small-sized vertebrates, which are rather common in the Pisco Formation, but mostly do not exhibit dolomite concretions. We report on a cetacean specimen, identified as belonging to the extinct short-snouted, small dolphin species Brachydelphis mazeasi (Pontoporiidae), preserved within a late Miocene sandy deposit at the site of Pampa Corre Viento. This specimen consists of a moderately disarticulated partial skeleton exhibiting well-mineralized bones; it is not enclosed within a dolomite concretion, being however delimited by an evident dark boundary in the host sediment. Scanning electron microscopy and microanalytical investigations identify Mn-oxides and apatite as early diagenetic minerals around the skeleton. We argue that a rapid burial of the specimen was pivotal for the preservation of the bones, and allowed the early establishment of anoxic processes for degradation of organic matter. Coupled with availability of P in porewater, the reducing conditions and the lowered pH allowed precipitation of Ca-phosphate while increasing Mn solubility close to the pontoporiid carcass. Mn-oxides precipitated at the redox boundary, the latter defining the outer edge of the volume of sediment affected by altered chemical conditions due to the decaying processes. The permeability of the sediment and the small size of the carcass were possible factors unfavorable to extensive sulfate reduction, thus preventing the formation of a dolomite concretion and allowing bone phosphatization. This record emphasizes the role of conditions favorable to bone mineralization in absence of an isolating carbonate concretion, in cases of high quality preservation of small-sized vertebrates observed in the Pisco Formation. The observation of patterns in the distribution of diagenetic minerals in the sediment enclosing vertebrate remains without, or with limited carbonate concretions provides insights into early taphonomic processes.


Sign in / Sign up

Export Citation Format

Share Document