aqueous pka
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 2)

2020 ◽  
Author(s):  
Amit Kumar ◽  
James Blakemore

The behavior of Lewis acidic metal ions in multimetallic systems has become a subject of intense interest in recent years. Parametrizing the behavior of these ions in non-aqueous conditions, commonly used in the field, is challenging due to the lack of direct measures of the Lewis acidity of metal ions in polar organic solvents. Here, we report the use of triphenylphosphine oxide (TPPO) as a 31P nuclear magnetic resonance (NMR) probe to quantify the Lewis acidity of a library of metal triflate salts using the Gutmann-Beckett method. A plot of the pKa values of the corresponding metal-aqua species, [M(H2O)m]n+, measured in H2O, vs. the 31P NMR shifts of TPPO in the presence of these metals in deuterated acetonitrile (d3-MeCN) and deuterated dichloromethane (CD2Cl2) displays a tightly co-linear relationship, suggesting similar behavior for these ions in water, d3-MeCN, and CD2Cl2. This collinearity reinforces the utility of the common approach of using the aqueous pKa values as a descriptor of Lewis acidity, regardless of the solvent used in the immediate experiments, and provides an insight into the usefulness of this descriptor in wide-ranging applications. Titration studies in d3-MeCNsuggest 1:1 binding of TPPO with monovalent ions, greater than 1:1 binding with divalent ions, and formation of multiple species with the highly Lewis acidic trivalent ions. Together, these data suggest that both aqueous pKa values and other single-measurement descriptors, while useful, provide only a snapshot of the influence of Lewis acidity on multimetallic chemical systems.


2020 ◽  
Author(s):  
Amit Kumar ◽  
James Blakemore

The behavior of Lewis acidic metal ions in multimetallic systems has become a subject of intense interest in recent years. Parametrizing the behavior of these ions in non-aqueous conditions, commonly used in the field, is challenging due to the lack of direct measures of the Lewis acidity of metal ions in polar organic solvents. Here, we report the use of triphenylphosphine oxide (TPPO) as a 31P nuclear magnetic resonance (NMR) probe to quantify the Lewis acidity of a library of metal triflate salts using the Gutmann-Beckett method. A plot of the pKa values of the corresponding metal-aqua species, [M(H2O)m]n+, measured in H2O, vs. the 31P NMR shifts of TPPO in the presence of these metals in deuterated acetonitrile (d3-MeCN) and deuterated dichloromethane (CD2Cl2) displays a tightly co-linear relationship, suggesting similar behavior for these ions in water, d3-MeCN, and CD2Cl2. This collinearity reinforces the utility of the common approach of using the aqueous pKa values as a descriptor of Lewis acidity, regardless of the solvent used in the immediate experiments, and provides an insight into the usefulness of this descriptor in wide-ranging applications. Titration studies in d3-MeCNsuggest 1:1 binding of TPPO with monovalent ions, greater than 1:1 binding with divalent ions, and formation of multiple species with the highly Lewis acidic trivalent ions. Together, these data suggest that both aqueous pKa values and other single-measurement descriptors, while useful, provide only a snapshot of the influence of Lewis acidity on multimetallic chemical systems.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Beth A. Caine ◽  
Maddalena Bronzato ◽  
Torquil Fraser ◽  
Nathan Kidley ◽  
Christophe Dardonville ◽  
...  

2020 ◽  
Vol 16 (2) ◽  
pp. 158-165 ◽  
Author(s):  
Natalija Nakov ◽  
Katerina Brezovska ◽  
Vasil Karchev ◽  
Jelena Acevska ◽  
Aneta Dimitrovska

Background: The available data concerning aqueous dissociation constant of mupirocin (sparingly soluble drug) are scarce. In this study, chromatographic, surfactant based potentiometric concept and spectrophotometric method were used for determination of the aqueous pKa value of mupirocin. Methods: Different approaches were used for estimation of the aqueous pKa value from the apparent pKa values obtained at four ACN concentrations, ranging from 22% to 30%. The potentiometric determination of the pKa value of mupirocin was performed using different concentration of Tween 80 as a surfactant. Results: The aqueous pKa value of mupirocin, determined for the first time by reverse-phase liquid chromatography method, was found to be 4.76. The obtained value was confirmed by potentiometric method (4.85). It was found that Tween 80 increases the pKa values. The linear relationship between the apparent pKa values and the surfactant concentrations was used as an approach for estimation of the aqueous pKa value. Both methods gave similar values for aqueous pKa which correspond with the theoretically obtained pKa value (4.88) using Pallas computer program. It was found that mupirocin gives pH-indipendent spectra, thus spectrophotometric method is not applicable for determination of pKa of this compound. Conclusion: This comprehensive approach used for the pKa determination enable us to obtained reliable results for the aqueous pKa value of mupirocin. The linear relationship between the pKa values and the nonionic surfactant concentrations could be used as a reliable and simple approach for determination of aqueous pKa value of sparingly soluble drugs.


2019 ◽  
Author(s):  
Beth A. Caine ◽  
Maddalena Bronzato ◽  
Torquil Fraser ◽  
Nathan Kidley ◽  
Christophe Dardonville ◽  
...  

Our new pKa predictor called AIBL outperforms Marvin for the well-known challenge of tautomerizable compounds. The powerful descriptors used here are simply ab initio equilibrium bond lengths. We also correct the literature experimental value for the herbicide Profoxydim, from a previous value 5.91 to a new value of 4.82. This is a fine and rare example of theory correcting experiment.


2019 ◽  
Author(s):  
Beth A. Caine ◽  
Maddalena Bronzato ◽  
Torquil Fraser ◽  
Nathan Kidley ◽  
Christophe Dardonville ◽  
...  

Our new pKa predictor called AIBL outperforms Marvin for the well-known challenge of tautomerizable compounds. The powerful descriptors used here are simply ab initio equilibrium bond lengths. We also correct the literature experimental value for the herbicide Profoxydim, from a previous value 5.91 to a new value of 4.82. This is a fine and rare example of theory correcting experiment.


2019 ◽  
Author(s):  
Beth A. Caine ◽  
Maddalena Bronzato ◽  
Paul Popelier

We show here for the first time that strongly correlated linear relationships exist between equilibrium bond lengths of the sulfonamide group and aqueous pKa values. Models are constructed for three variants of the SO2NHR group: primary benzene sulfonamide derivatives (e.g. diuretic drugs furosemide and hydrochlorothiazide), N-phenyl substituted 4-amino-N-phenylbenzenesulfonamide analogues (e.g. the sulfa antibiotic sulfadiazine) and phenylsulfonylureas (e.g. insulin secretogogue, glimepiride). In the context of these compounds, we present solutions to some of the more complex challenges in pKa prediction: (i) prediction for multiprotic compounds, (ii) predicting macroscopic values for compounds that tautomerize, and (iii) quantum chemical pKa prediction for compounds with more than 50 atoms. Using bond lengths as a powerful descriptor of ionization feasibility, we also identify that literature values for drug compounds celecoxib, glimepiride and glipizide are inaccurate. Our newly measured experimental values match our initial predictions to within 0.26 pKa units, whereas previous values were found to deviate by up to 1.68 pKa units. For glimepiride, our corrected value denotes a percentage of ionization at intracellular pH, which is only now in excellent agreement with its known therapeutic efficacy. We propose that linear relationships between bond lengths and pKa should emerge for any set of congeners, thus providing a powerful method of pKa prediction obviating the need for thermodynamic cycles.


Sign in / Sign up

Export Citation Format

Share Document