amplitude damping channel
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Author(s):  
C. Seida ◽  
A. El Allati ◽  
N. Metwally ◽  
Y. Hassouni

Abstract In this suggested version of the bidirectional teleportation protocol, it is assumed that the used quantum channel passes through an amplitude damping channel. Therefore, some of its quantum correlations (entanglement) are lost and, consequently, its efficiency to implement this protocol decreases. The weak and the reversal measurements are used to recover the losses of these correlations, where the negativity, as a measure of entanglement is improved. In this context, we discussed the effect of the noisy strength on the fidelities of the bidirectional teleported states between the users. It is shown that, by applying the weak and the reversal measurements (WRM) on the initial quantum channel between the users, the fidelities of the teleported states are improved. Moreover, we showed that, the upper bounds of the teleported states depend on the initial states of the triggers and the strengths of WRM. It is worth noting that the WRM improves the quantum correlations of the shared channel and, hence, the fidelity of the teleported state if the initial fidelity of the teleported state is larger than 0.5


Laser Physics ◽  
2021 ◽  
Vol 31 (10) ◽  
pp. 105204
Author(s):  
Qiong Wang ◽  
Lan Xu ◽  
Xing Xiao ◽  
Zhi He

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 708
Author(s):  
Matteo Piccolini ◽  
Farzam Nosrati ◽  
Giuseppe Compagno ◽  
Patrizia Livreri ◽  
Roberto Morandotti ◽  
...  

We address the problem of entanglement protection against surrounding noise by a procedure suitably exploiting spatial indistinguishability of identical subsystems. To this purpose, we take two initially separated and entangled identical qubits interacting with two independent noisy environments. Three typical models of environments are considered: amplitude damping channel, phase damping channel and depolarizing channel. After the interaction, we deform the wave functions of the two qubits to make them spatially overlap before performing spatially localized operations and classical communication (sLOCC) and eventually computing the entanglement of the resulting state. This way, we show that spatial indistinguishability of identical qubits can be utilized within the sLOCC operational framework to partially recover the quantum correlations spoiled by the environment. A general behavior emerges: the higher the spatial indistinguishability achieved via deformation, the larger the amount of recovered entanglement.


Author(s):  
Xiao-Lan Zong ◽  
Wei Song ◽  
Ming Yang ◽  
Zhuo-Liang Cao

We propose a scheme to enhance entanglement from amplitude damping or correlated amplitude damping decoherence. We show that entanglement sudden death time can be prolonged by the initial single-qubit operation combined with local filtering operation. For the amplitude damping channel case, we give the optimal single-qubit operation for arbitrary pure state [Formula: see text]. For the correlated amplitude damping channel case, we find that single-qubit operation on the initial state can not only enhance the final entanglement but also avoid entanglement sudden death. Compared to the previous schemes, the optimal operations and local filtering operations used in our scheme are independent with the decay parameters of the environment.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Jason L. Pereira ◽  
Stefano Pirandola

Sign in / Sign up

Export Citation Format

Share Document