polar liquids
Recently Published Documents


TOTAL DOCUMENTS

584
(FIVE YEARS 30)

H-INDEX

49
(FIVE YEARS 0)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Richard J. G. Löffler ◽  
Martin M. Hanczyc ◽  
Jerzy Gorecki

AbstractIn a recently published paper (doi.org/10.3390/molecules26113116) on self-propelled motion of objects on the water surface, we described a novel surface-active plastic material obtained by dissolution of camphor and polypropylene in camphene at 250 $$^\circ$$ ∘ C. The material has wax-like mechanical properties, can be easily formed to any moldable shape, and allows for longer and more stable self-propelled motion if compared with pure camphor or pure camphene or of a camphene-camphor wax. Here we use scanning electron microscopy to visualize and characterize the microporous structure of the solid polypropylene foam formed in the plastic for different polypropylene contents. The topology of foams remaining in the material after camphor and camphene molecules have been removed through evaporation or dissolution is similar to polypropylene foams obtained using thermally-induced phase separation. We show that the foams have a superhydrophobic surface but strongly absorb non-polar liquids, and suggest an array of potential scientific and industrial applications.


2021 ◽  
Vol 7 (12) ◽  
pp. 12-18
Author(s):  
S. Useinova

Results of calculating the theoretical principles of the variational method for measuring the dielectric parameters of polar liquids: cyclopentanol and its solutions in cyclopentane have been shown in the paper. Their dielectric constant ξ' and dielectric losses ξ'' are calculated. Solutions to the equations were found and a graphical solution method and an automated method for calculating ξ' and ξ'' were developed on the basis of this method. Comparison with the results of other methods revealed that these indicators are at the same time minimal within 1.5–2.0%.


Author(s):  
Irina V. Beregovaya ◽  
Irina S. Tretyakova ◽  
Vsevolod I. Borovkov

2021 ◽  
pp. 1-17
Author(s):  
Neha Singh ◽  
Sujeet K Sinha

Abstract Liquid absorption and tribological studies of epoxy-based composite with ultra-high molecular weight polyethylene (UHMWPE) and MoS2, sliding against steel were conducted. Composites, as coating and as a bulk, were soaked in water, base oil, ionic liquid and lithium-based grease for different intervals of days or months. Liquid weight% gain was more in polar liquids when compared to non-polar. Coated composite soaked in grease for 10 days showed coefficient of friction of 0.08 with wear-life of more than 1 million cycles and wear rate of 1.7×10−8 mm3/Nm. Bulk polymer composite soaked in grease for 180 days provided the least coefficient of friction of 0.06 and specific wear rate of 2.60×10−7 mm3/Nm.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jidong Li ◽  
Yuyang Long ◽  
Zhili Hu ◽  
Jiyuan Niu ◽  
Tiezhu Xu ◽  
...  

AbstractExternal photo-stimuli on heterojunctions commonly induce an electric potential gradient across the interface therein, such as photovoltaic effect, giving rise to various present-day technical devices. In contrast, in-plane potential gradient along the interface has been rarely observed. Here we show that scanning a light beam can induce a persistent in-plane photoelectric voltage along, instead of across, silicon-water interfaces. It is attributed to the following movement of a charge packet in the vicinity of the silicon surface, whose formation is driven by the light-induced potential change across the capacitive interface and a high permittivity of water with large polarity. Other polar liquids and hydrogel on silicon also allow the generation of the in-plane photovoltage, which is, however, negligible for nonpolar liquids. Based on the finding, a portable silicon-hydrogel array has been constructed for detecting the shadow path of a moving Cubaris. Our study opens a window for silicon-based photoelectronics through introducing semiconductor-water interfaces.


2021 ◽  
Vol 42 (10) ◽  
Author(s):  
Yasser A. Aljeshi ◽  
Malyanah Binti Mohd Taib ◽  
J. P. Martin Trusler

AbstractIn this work, we present a model, based on rough hard-sphere theory, for the tracer diffusion coefficients of gaseous solutes in non-polar liquids. This work extends an earlier model developed specifically for carbon dioxide in hydrocarbon liquids and establishes a general correlation for gaseous solutes in non-polar liquids. The solutes considered were light hydrocarbons, carbon dioxide, nitrogen and argon, while the solvents were all hydrocarbon liquids. Application of the model requires knowledge of the temperature-dependent molar core volumes of the solute and solvent, which can be determined from pure-component viscosity data, and a temperature-independent roughness factor which can be determined from a single diffusion coefficient measurement in the system of interest. The new model was found to correlate the experimental data with an average absolute relative deviation of 2.7 %. The model also successfully represents computer-simulation data for tracer diffusion coefficients of hard-sphere mixtures and reduces to the expected form for self-diffusion when the solute and solvent become identical.


2021 ◽  
Vol 11 (12) ◽  
pp. 5457
Author(s):  
Giuseppe Cassone ◽  
Sebastiano Trusso ◽  
Jiri Sponer ◽  
Franz Saija

Although many H-bonded systems have been extensively investigated by means of infrared (IR) spectroscopy, the vibrational response to externally applied electric fields of polar liquids remains poorly investigated. However, local electric fields along with quantum-mechanical interactions rule the behavior of H-bonded samples at the molecular level. Among the many H-bonded systems, liquid methanol holds a key place in that it exhibits a very simple H-bond network where, on average, each molecule acts as a single H-bond donor and, at the same time, as a single H-bond acceptor. Here we report on the IR spectra emerging from a series of state-of-the-art ab initio molecular dynamics simulations of bulk liquid methanol under the action of static and homogeneous electric fields. In addition, the same analysis is here conducted in the absence of the external field and for different temperatures. Although some electric-field-induced effects resemble the response of other polar liquids (such as the global contraction of the IR spectrum upon field exposure), it turns out that, distinctly from water, the “electrofreezing” phenomenon is unlikely to happen in liquid methanol. Finally, we provide atomistic analyses magnifying the completely different nature of electric-field- and temperature-induced effects on bulk liquid methanol and on its vibrational response.


2021 ◽  
Vol 154 (11) ◽  
pp. 116101
Author(s):  
Alexey A. Gavrilov ◽  
Elena Yu. Kramarenko

Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Hamid R. Taghiyari ◽  
Roya Majidi ◽  
Mahnaz Ghezel Arsalan ◽  
Asaad Moradiyan ◽  
Holger Militz ◽  
...  

The penetration properties of three different liquids on the surface of medium-density fiberboard (MDF) and particleboard panels were studied. Water, as a polar liquid, was compared to two other less polar liquids (namely, ethanol and kerosene) with significantly larger molecules. Measurement of penetration time and wetted area demonstrated significantly higher values for water in comparison with the other two liquids, in both composite types. Calculation of adsorption energies, as well as adsorption distances, of the three liquid molecules on hemicellulose showed higher potentiality of water molecules in forming bonds on hemicellulose. However, comparison of the adsorption energies of cellulose with hemicellulose indicated a higher impact of the formation of bonds between hydroxyl groups in water and cellulose in hindering the penetration of water molecules into the composite textures. It was concluded that the formation of strong and stable bonds between the hydroxyl groups in water and cellulose resulted in a significant increase in penetration time and wetted area.


Sign in / Sign up

Export Citation Format

Share Document