low sintering temperature
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 55)

H-INDEX

26
(FIVE YEARS 6)

2021 ◽  
Vol 13 (22) ◽  
pp. 12595
Author(s):  
Muneeb Irshad ◽  
Mehak Khalid ◽  
Muhammad Rafique ◽  
Asif Nadeem Tabish ◽  
Ahmad Shakeel ◽  
...  

Perovskite materials have gained a lot of interest in solid oxide fuel cell (SOFC) applications owing to their exceptional properties; however, ideal perovskites exhibit proton conduction due to availability of low oxygen vacancies, which limit their application as SOFC electrolytes. In the current project, Sm was doped at the B-site of a BaCe0.7-xSmxZr0.2Y0.1O3-δ perovskite electrolyte for intermediate-temperature solid oxide fuel cells (IT-SOFCs). BaCe0.7-xSmxZr0.2Y0.1O3-δ electrolytes were synthesized through a cost-effective coprecipitation method and were sintered at a low sintering temperature. The effects of samarium (Sm) doping on the electrochemical performance of BaCe0.7-xSmxZr0.2Y0.1O3-δ were investigated. X-ray diffraction (XRD) analysis confirmed that the BaCe0.7-xSmxZr0.2Y0.1O3-δ electrolyte material retained the perovskite structure. The secondary phase of Sm2O3 was observed for BaCe0.4Sm0.3Zr0.2Y0.1O3-δ. Scanning electron microscopic (SEM) imaging displayed the dense microstructure for all the compositions, while prominent crystal growth was observed for composition x = 0.3. The formation of the perovskite structure and the presence of the hydroxyl groups of metal oxides for all the compositions were confirmed by Fourier transform infrared spectroscopy (FTIR). An increased symmetrical disturbance was also observed for the increased doping ratio of the Sm. Thermogravimetric analysis (TGA) of all the compositions showed no major weight loss in the SOFC operating temperature range. It was also noted that the conductivity of BaCe0.7-xSmxZr0.2Y0.1O3-δ gradually decreased with the increased contents of the Sm metal. The maximum power density of 390 mW cm−2, and an open-circuit voltage (OCV) of 1.0 V at 600 °C, were obtained, showing that BaCe0.7-xSmxZr0.2Y0.1O3-δ, synthesized by a cost-effective method and sintered at a low temperature, can be used as a proton-conducting electrolyte for IT-SOFCs.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5941
Author(s):  
Steve Lien-Chung Hsu ◽  
Yen-Ting Chen ◽  
Meng-Liang Chen ◽  
In-Gann Chen

A silver precursor (silver 2-ethylhexanoate) and silver nanoparticles were synthesized and used to prepare a low sintering temperature nano-silver paste (PM03). We optimized the amount of silver 2-ethylhexanoate added and the sintering temperature to obtain the best performance of the nano-silver paste. The relationship between the microstructures and properties of the paste was studied. The addition of silver 2-ethylhexanoate resulted in less porosity, leading to lower resistivity and higher shear strength. Thermal compression of the paste PM03 at 250 °C with 10 MPa pressure for 30 min was found to be the proper condition for copper-to-copper bonding. The resistivity was (3.50 ± 0.02) × 10−7 Ω∙m, and the shear strength was 57.48 MPa.


Author(s):  
PALIIENKO Olena

As a result of the research carried out, the search for the optimal compositions of composite ceramics was carried out by the method of planning the experiment using the FFD25-1 as an experiment plan. The influence of modified additives of eutectic compositions on the physical and technical properties of composite ceramics for special purposes, with a low sintering temperature, used for the manufacture of grinding bodies, has been determined.


2021 ◽  
Vol 2 (9) ◽  
pp. 100569
Author(s):  
Shaojie Chen ◽  
Xiangchen Hu ◽  
Wenda Bao ◽  
Zeyu Wang ◽  
Qun Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document