absorbing materials
Recently Published Documents


TOTAL DOCUMENTS

958
(FIVE YEARS 215)

H-INDEX

50
(FIVE YEARS 12)

Author(s):  
Huabin Zhang ◽  
Renchao Che ◽  
Luxi Zhang ◽  
Wenhuan Huang ◽  
Wenming Gao ◽  
...  

Carbon-based composites with hetero-interfaces is a group of promising electromagnetic wave absorbing materials (EWAMs) for its excellent dielectric loss. For developing this kind of EWAM, in situ constructing hetero-interfaces and...


2022 ◽  
pp. 102604
Author(s):  
Xin Wu ◽  
Xiaolong Wei ◽  
Haojun Xu ◽  
Weifeng He ◽  
Chao Sun ◽  
...  

2022 ◽  
Vol 17 (01) ◽  
pp. P01019
Author(s):  
J. Maestre ◽  
C. Bahamonde ◽  
I. Lamas Garcia ◽  
K. Kershaw ◽  
N. Biancacci ◽  
...  

Abstract Beam Intercepting Devices (BIDs) are essential protection elements for the operation of the Large Hadron Collider (LHC) complex. The LHC internal beam dump (LHC Target Dump Injection or LHC TDI) is the main protection BID of the LHC injection system; its main function is to protect LHC equipment in the event of a malfunction of the injection kicker magnets during beam transfer from the SPS to the LHC. Several issues with the TDI were encountered during LHC operation, most of them due to outgassing from its core components induced by electron cloud effects, which led to limitations of the injector intensity and hence had an impact on LHC availability. The absorbing cores of the TDIs, and of beam intercepting devices in general, need to deal with high thermo-mechanical loads induced by the high intensity particle beams. In addition, devices such as the TDI — where the absorbing materials are installed close to the beam, are important contributors to the accelerator impedance budget. To reduce impedance, the absorbing materials that make up the core must be typically coated with high electrical conductivity metals. Beam impact testing of the coated absorbers is a crucial element of development work to ensure their correct operation. In the work covered by this paper, the behaviour of several metal-coated absorber materials was investigated when exposed to high intensity and high energy proton beams in the HiRadMat facility at CERN. Different coating configurations based on copper and molybdenum, and absorbing materials such as isostatic graphite, Carbon Fibre Composite (CfC) and Silicon Carbide reinforced with Silicon Carbide fibres (SiC-SiC), were tested in the facility to assess the TDI's performance and to extract information for other BIDs using these materials. In addition to beam impact tests and an extensive Post Irradiation Examination (PIE) campaign to assess the performance of the coatings and the structural integrity of the substrates, extensive numerical simulations were carried out.


Author(s):  
Cuicui Ling ◽  
Bingxin Feng ◽  
Xiaomeng Wang ◽  
lingtan Zhang ◽  
tuo zhang ◽  
...  

Self-powered photodetectors with excellent figure-of-merits, fast response speed, and broadband detection capability have drawn tremendous research interest. However, it is still challenging to develop excellent light-absorbing materials as photodetectors with...


Author(s):  
yang zou ◽  
Zhao hui Qi ◽  
Zuying Zheng ◽  
Donglin He ◽  
Guowu Wang ◽  
...  

Abstract A variety of new challenges are being faced in the development of high temperature microwave absorbing materials in the X band. Recently, some of the 2:17 phase rare-earth soft magnetic alloys with high permeability and curie temperature have potential to be a novel X band high temperature microwave absorbing material. In this paper, a high temperature microwave absorbing material (Nd2Co17@C/Na2SiO3) is prepared with Nd2Co17 as a raw material. After carbon cladding and Na2SiO3 treatment, the composite can work stably at 723 K. The calculated absorption properties display that the reflection loss (RL) intensity of the composite with a thickness of 1.5 mm is below -6 dB in the whole X band. Moreover, the thermogravimetric (TG) analysis results and static magnetic properties before and after sintering indicate that the material has excellent resistance to oxidation. Rare earth alloy materials provide a new possibility for the research of innovative high temperature absorbing materials.


2021 ◽  
Author(s):  
He Huang ◽  
Jinyu Xu ◽  
Junliang Liu ◽  
Haowen Chen

Abstract In this paper, the airport pavement concrete has been taken as the main research object, three kinds of absorbing materials, namely silicon carbide (SiC), iron oxide (Fe3O4) and graphite, have been respectively mixed into the concrete, and an open microwave testing system has been established. Based on this system, the basic mechanical properties, microwave heating characteristics, microwave deicing effect and its influencing factors of modified concrete are systematically studied. In addition, a comparative analysis of the influence mechanism of different absorbing materials on the strength and absorbing performance of pavement concrete is carried out. The results showed that the addition of SiC, Fe3O4, and graphite could effectively enhance the microwave effect of pavement concrete, and the more the addition, the more obvious the improvement. Furthermore, under the same mixing amount, the degree of improvement of microwave deicing performance of each absorbing material from large to small is graphite, Fe3O4, SiC. However, the addition of graphite will form several weak links in concrete, thereby reducing its overall mechanical properties. SiC can slightly improve the mechanical properties of pavement concrete, but it has no significant effect on the microwave absorption properties. With the addition of Fe3O4, the strength of concrete changes little, and the effect of microwave absorbing heating and microwave deicing is remarkable. In general, the comprehensive performance of microwave deicing of Fe3O4 modified concrete is optimal. This study has high scientific and practical significance, and can be widely applied to deicing projects on airports and high-grade highways.


2021 ◽  
pp. 52023
Author(s):  
Caroline P. R. Malere ◽  
Bruno Donati ◽  
Nicholas Eras ◽  
Valdirene A. Silva ◽  
Liliane F. Lona

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7537
Author(s):  
Yilin Huang ◽  
Weidong Xue ◽  
Xingwang Hou ◽  
Rui Zhao

In this paper, we will discuss the excellent broadband microwave absorption behaviors of Cu/CuO/carbon nanosheet composites: traces of copper and oxide embedded in a carbon nano-sheet not only cut down the high permittivity of adsorbs but also induce more interfacial polarization centers. The results showed that at a cracking temperature of 900 °C, the fabricated material has a unique ripple-like structure, which promotes the hierarchical interfacial polarization. The prepared material has a maximum absorption bandwidth of 4.48 GHz at an exceedingly thin thickness of 1.7 mm and a maximum reflection loss of −25.3 dB at a thickness of 2 mm. It is a relatively ideal material for electromagnetic wave absorption.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7487
Author(s):  
Yuhang Dong ◽  
Dexian Yin ◽  
Linhui Deng ◽  
Renwei Cao ◽  
Shikai Hu ◽  
...  

Sound absorbing materials combining millable polyurethane elastomer (MPU) and eucommia ulmoides rubber (EUG) were successfully fabricated via a physical blending process of EUG and MPU. The microstructure, crystallization performances, damping, mechanical and sound absorption properties of the prepared MPU/EUG composites were investigated systematically. The microstructure surface of various MPU/EUG composites became rough and cracked by the gradual incorporation of EUG, resulting in a deteriorated compatibility between EUG and MPU. With the increase of EUG content, the storage modulus (E’) of various MPU/EUG composites increased in a temperature range of −50 °C to 40 °C and their loss factor (tanδ) decreased significantly, including a reduction of the tanδ of MPU/EUG (70/30) composites from 0.79 to 0.64. Specifically, the addition of EUG sharply improved the sound absorption performances of various MPU/EUG composites in a frequency range of 4.5 kHz–8 kHz. Compared with that of pure MPU, the sound absorption coefficient of the MPU/EUG (70/30) composite increased 52.2% at a pressure of 0.1 MPa and 16.8% at a pressure of 4 MPa, indicating its outstanding sound absorption properties.


Sign in / Sign up

Export Citation Format

Share Document