gut scale
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 21)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Naoyuki Haba ◽  
Toshifumi Yamada

Abstract We study colored Higgsino-mediated proton decay (dimension-five proton decay) in a model based on the flipped SU(5) GUT. In the model, the GUT-breaking 10, $$ \overline{\mathbf{10}} $$ 10 ¯ fields have a GUT-scale mass term and gain VEVs through higher-dimensional operators, which induces an effective mass term between the color triplets in the 5, $$ \overline{\mathbf{5}} $$ 5 ¯ Higgs fields that is not much smaller than the GUT scale. This model structure gives rise to observable dimension-five proton decay, and at the same time achieves moderate suppression on dimension-five proton decay that softens the tension with the current bound on Γ(p → K+$$ \overline{\nu} $$ ν ¯ ). We investigate the flavor dependence of the Wilson coefficients of the operators relevant to dimension-five proton decay, by relating them with diagonalized Yukawa couplings and CKM matrix components in MSSM, utilizing the fact that the GUT Yukawa couplings are in one-to-one correspondence with the MSSM Yukawa couplings in flipped models. Then we numerically evaluate the Wilson coefficients, and predict the distributions of the ratios of the partial widths of various proton decay modes.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Zhuang Li ◽  
Guo-Li Liu ◽  
Fei Wang ◽  
Jin Min Yang ◽  
Yang Zhang

Abstract Gluino-SUGRA ($$ \overset{\sim }{g} $$ g ~ SUGRA), which is an economical extension of the predictive mSUGRA, adopts much heavier gluino mass parameter than other gauginos mass parameters and universal scalar mass parameter at the unification scale. It can elegantly reconcile the experimental results on the Higgs boson mass, the muon g − 2, the null results in search for supersymmetry at the LHC and the results from B-physics. In this work, we propose several new ways to generate large gaugino hierarchy (i.e. M3 » M1, M2) for $$ \overset{\sim }{g} $$ g ~ SUGRA model building and then discuss in detail the implications of the new muon g − 2 results with the updated LHC constraints on such $$ \overset{\sim }{g} $$ g ~ SUGRA scenarios. We obtain the following observations: (i) for the most interesting M1 = M2 case at the GUT scale with a viable bino-like dark matter, the $$ \overset{\sim }{g} $$ g ~ SUGRA can explain the muon g − 2 anomaly at 1σ level and be consistent with the updated LHC constraints for 6 ≤ M3/M1 ≤ 9 at the GUT scale; (ii) For M1 : M2 = 5 : 1 at the GUT scale with wino-like dark matter, the $$ \overset{\sim }{g} $$ g ~ SUGRA model can explain the muon g − 2 anomaly at 2σ level and be consistent with the updated LHC constraints for 3 ≤ M3/M1 ≤ 3.2 at the GUT scale; (iii) For M1 : M2 = 3 : 2 at the GUT scale with mixed bino-wino dark matter, the $$ \overset{\sim }{g} $$ g ~ SUGRA model can explain the muon g − 2 anomaly at 1σ level and be consistent with the updated LHC constraints for 6.9 ≤ M3/M1 ≤ 7.5 at the GUT scale. Although the choice of heavy gluino will always increase the FT involved, some of the 1σ/2σ survived points of $$ \Delta {a}_{\mu}^{\mathrm{combine}} $$ ∆ a μ combine can still allow low EWFT of order several hundreds and be fairly natural. Constraints from (dimension-five operator induced) proton decay are also discussed.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Stephen F. King ◽  
Silvia Pascoli ◽  
Ye-Ling Zhou ◽  
Jessica Turner

Abstract Grand Unified Theories (GUT) predict proton decay as well as the formation of cosmic strings which can generate gravitational waves. We determine which non-supersymmetric SO(10) breaking chains provide gauge unification in addition to a gravitational signal from cosmic strings. We calculate the GUT and intermediate scales for these SO(10) breaking chains by solving the renormalisation group equations at the two-loop level. This analysis predicts the GUT scale, hence the proton lifetime, in addition to the scale of cosmic string generation and thus the associated gravitational wave signal. We determine which SO(10) breaking chains survive in the event of the null results of the next generation of gravitational waves and proton decay searches and determine the correlations between proton decay and gravitational waves scales if these observables are measured.


Author(s):  
Vivek Kumar Nautiyal ◽  
Bipin Singh Koranga

AbstractWe study the Planck scale effects on Jarlskog determiant in the four flavor framework. On electroweak symmetry breaking, quantum gravitational effects lead to an effective SU(2) × U(1) invariant dimension-5 Lagrangian including neutrino and Higgs forces, which perturbed the neutrino mass term and produce an extra terms in the neutrino mass matrix. We consider that gravitational interaction is independent from flavor and compute the Jarlskog determiant due to Planck scale effects. In the case of leptonic sector, the strentgh of CP violation is measured by Jarlskog determiant. We applied our approach to study Jarlskog determinant in the four flavor neutrino mixing above the GUT scale.


2021 ◽  
pp. 115486
Author(s):  
Fei Wang ◽  
Lei Wu ◽  
Yang Xiao ◽  
Jin Min Yang ◽  
Yang Zhang
Keyword(s):  

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
John Ellis ◽  
Jason L. Evans ◽  
Natsumi Nagata ◽  
Keith A. Olive

AbstractWe explore a missing-partner model based on the minimal SU(5) gauge group with $$\mathbf{75} $$ 75 , $$\mathbf{50} $$ 50 and $$\overline{\mathbf{50 }}$$ 50 ¯ Higgs representations, assuming a super-GUT CMSSM scenario in which soft supersymmetry-breaking parameters are universal at some high scale $$M_{\mathrm{in}}$$ M in above the GUT scale $$M_{\mathrm{GUT}}$$ M GUT . We identify regions of parameter space that are consistent with the cosmological dark matter density, the measured Higgs mass and the experimental lower limit on $$\tau (p \rightarrow K^+ \nu )$$ τ ( p → K + ν ) . These constraints can be satisfied simultaneously along stop coannihilation strips in the super-GUT CMSSM with $$\tan \beta \sim $$ tan β ∼ 3.5–5 where the input gaugino mass $$m_{1/2} \sim $$ m 1 / 2 ∼ 15–25 TeV, corresponding after strong renormalization by the large GUT Higgs representations between $$M_{\mathrm{in}}$$ M in and $$M_{\mathrm{GUT}}$$ M GUT to $$m_{\mathrm{LSP}}, m_{{\tilde{t}}_1} \sim $$ m LSP , m t ~ 1 ∼ 2.5–5 TeV and $$m_{{\tilde{g}}} \sim $$ m g ~ ∼ 13–20 TeV, with the light-flavor squarks significantly heavier. We find that $$\tau (p \rightarrow K^+ \nu ) \lesssim 3 \times 10^{34}$$ τ ( p → K + ν ) ≲ 3 × 10 34  years throughout the allowed range of parameter space, within the range of the next generation of searches with the JUNO, DUNE and Hyper-Kamiokande experiments.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Stefan Antusch ◽  
Christian Hohl ◽  
Vasja Susič

Abstract While the observation of nucleon decay would be a smoking gun of Grand Unified Theories (GUTs) in general, the ratios between the decay rates of the various channels carry rich information about the specific GUT model realization. To investigate this fingerprint of GUT models in the context of supersymmetric (SUSY) GUTs, we present the software tool SusyTCProton, which is an extension of the module SusyTC to be used with the REAP package. It allows to calculate nucleon decay rates from the relevant dimension five GUT operators specified at the GUT scale, including the full loop-dressing at the SUSY scale. As an application, we investigate the fingerprints of two example GUT toy models with different flavor structures, performing an MCMC analysis to include the experimental uncertainties for the charged fermion masses and CKM mixing parameters. While both toy models provide equally good fits to the low energy data, we show how they could be distinguished via their predictions of ratios for nucleon decay rates. Together with SusyTCProton we also make the additional module ProtonDecay public. It can be used independently from REAP and allows to calculate nucleon decay rates from given D = 5 and D = 6 operator coefficients (accepting the required SUSY input for the D = 5 case in SLHA format). The D = 6 functionality can also be used to calculate nucleon decay in non-SUSY GUTs.


2021 ◽  
pp. 2150104
Author(s):  
N. V. Krasnikov

We show that in nonlocal generalization of standard nonsupersymmetric SU(5) GUT, it is possible to solve the problems with the proton lifetime and the Weinberg angle without introduction of additional particles in the spectrum of the theory. Nonlocal scale [Formula: see text] responsible for ultraviolet cutoff coincides (up to some factor) with GUT scale [Formula: see text]. We find that in the simplest nonlocal modification of the SU(5) model, [Formula: see text]GeV. In the general case, the value of [Formula: see text] is an arbitrary and the most interesting option [Formula: see text] could be realized.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yaşar Hiçyılmaz

Abstract We show that in the CMSSM with the non-holomorphic soft SUSY breaking terms, the Yukawa coupling unification of the third family fermions at the GUT scale, called t − b − τ Yukawa unification (YU), is possible under the recent collider and Dark Matter results. The YU parameter can also be found Rtbτ≈ 1, called perfect unification. We find that the squark masses exceed 3 TeV while the stau can be considerably lighter. In the case of YU, the tan β is in the interval [46,55]. We obtain bino-like dark matter (DM) of mass in the range of 0.6 TeV ≲ $$ {m}_{\upchi_1^0} $$ m χ 1 0 ≲ 1.3 TeV where the recent Dark Matter direct detection limits are also satisfied. We also identify A-resonance solutions which reduce the relic abundance of LSP neutralino down to the ranges compatible with the current Planck measurements.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Xiaokang Du ◽  
Fei Wang

Abstract Modular flavor symmetry can be used to explain the quark and lepton flavor structures. The SUSY partners of quarks and leptons, which share the same superpotential with the quarks and leptons, will also be constrained by the modular flavor structure and show a different flavor(mixing) pattern at the GUT scale. So, in realistic modular flavor models with SUSY completion, constraints from the collider and DM constraints can also be used to constrain the possible values of the modulus parameter. In the first part of this work, we discuss the possibility that the S3 modular symmetry can be preserved by the fixed points of T2/ZN orbifold, especially from T2/Z2. To illustrate the additional constraints from collider etc on modular flavor symmetry models, we take the simplest UV SUSY-completion S3 modular invariance SU(5) GUT model as an example with generalized gravity mediation SUSY breaking mechanism. We find that such constraints can indeed be useful to rule out a large portion of the modulus parameters. Our numerical results show that the UV-completed model can account for both the SM (plus neutrino) flavor structure and the collider, DM constraints. Such discussions can also be applied straightforwardly to other modular flavor symmetry models, such as A4 or S4 models.


Sign in / Sign up

Export Citation Format

Share Document