targeted drug
Recently Published Documents


TOTAL DOCUMENTS

3193
(FIVE YEARS 966)

H-INDEX

125
(FIVE YEARS 22)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 178
Author(s):  
Joanna Kopecka

Mitochondria, organelles surrounded by a double membrane and with their own small genome, are the cells’ energy centres [...]


2022 ◽  
Vol 8 ◽  
Author(s):  
Lihong Gu ◽  
Feng Zhang ◽  
Jinhui Wu ◽  
Yuzheng Zhuge

Liver fibrosis is a reversible disease course caused by various liver injury etiologies, and it can lead to severe complications, such as liver cirrhosis, liver failure, and even liver cancer. Traditional pharmacotherapy has several limitations, such as inadequate therapeutic effect and side effects. Nanotechnology in drug delivery for liver fibrosis has exhibited great potential. Nanomedicine improves the internalization and penetration, which facilitates targeted drug delivery, combination therapy, and theranostics. Here, we focus on new targets and new mechanisms in liver fibrosis, as well as recent designs and development work of nanotechnology in delivery systems for liver fibrosis treatment.


2022 ◽  
pp. 289-311
Author(s):  
Raghavv Raghavender Suresh ◽  
Shruthee Sankarlinkam ◽  
Sai Rakshana Karuppusami ◽  
Niraimathi Pandiyan ◽  
Suwetha Bharathirengan ◽  
...  

In recent years, there has been significant growth and burgeoning interest in utilizing nanoparticles for various biomedical applications, including medical diagnostics, targeted drug delivery, tissue engineering, regenerative medicine, and biomedical textiles. In particular, nanoparticles functionalized with biological molecules have unique properties and are very effective in medical diagnostics. Besides that, nanoparticles have a wide range of therapeutic applications, including the development of nanodrug delivery systems, the design of novel drugs, as well as their contribution to the design of therapeutic materials. This chapter provides an overview of recent advancements in the biomedical applications of nanoparticles. Finally, this chapter discusses the challenges of the toxicological evaluation of engineered nanoparticles and the importance of conducting detailed studies on the synthesis of future nanomaterials to develop cutting-edge technologies for addressing a wide range of biomedical issues.


2022 ◽  
Author(s):  
Nafeesa Khatoon ◽  
Zefei Zhang ◽  
Chunhui Zhou ◽  
Maoquan Chu

The enhanced and targeted drug delivery with low systemic toxicity and subsequent release of drugs is the major concern among researchers and pharmaceutics. Inspite of greater advancement and discoveries in...


Theranostics ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1132-1147
Author(s):  
Zhiyuan Sun ◽  
Qiqi Liu ◽  
Xinyue Wang ◽  
Jin Wu ◽  
Xueyan Hu ◽  
...  

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 261
Author(s):  
Madeeha Shahzad Lodhi ◽  
Fatima Khalid ◽  
Muhammad Tahir Khan ◽  
Zahoor Qadir Samra ◽  
Shabbir Muhammad ◽  
...  

Therapeutic effects of anticancer medicines can be improved by targeting the specific receptors on cancer cells. Folate receptor (FR) targeting with antibody (Ab) is an effective tool to deliver anticancer drugs to the cancer cell. In this research project, a novel formulation of targeting drug delivery was designed, and its anticancer effects were analyzed. Folic acid-conjugated magnetic nanoparticles (MNPs) were used for the purification of folate receptors through a novel magnetic affinity purification method. Antibodies against the folate receptors and methotrexate (MTX) were developed and characterized with enzyme-linked immunosorbent assay and Western blot. Targeting nanomedicines (MNP-MTX-FR Ab) were synthesized by engineering the MNP with methotrexate and anti-folate receptor antibody (anti-FR Ab). The cytotoxicity of nanomedicines on HeLa cells was analyzed by calculating the % age cell viability. A fluorescent study was performed with HeLa cells and tumor tissue sections to analyze the binding efficacy and intracellular tracking of synthesized nanomedicines. MNP-MTX-FR Ab demonstrated good cytotoxicity along all the nanocomposites, which confirms that the antibody-coated medicine possesses the potential affinity to destroy cancer cells in the targeted drug delivery process. Immunohistochemical approaches and fluorescent study further confirmed their uptake by FRs on the tumor cells’ surface in antibody-mediated endocytosis. The current approach is a useful addition to targeted drug delivery for better management of cancer therapy along with immunotherapy in the future.


2022 ◽  
Vol 11 (1) ◽  
pp. 372-413
Author(s):  
Mohamed Ibrahim Ahmed Abdel Maksoud ◽  
Mohamed Mohamady Ghobashy ◽  
Ahmad S. Kodous ◽  
Ramy Amer Fahim ◽  
Ahmed I. Osman ◽  
...  

Abstract Magnetic spinel ferrite nanoparticles (SFNPs) attract high scientific attention from researchers due to their broad area for biomedicine applications, comprising cancer magnetic hyperthermia and targeted drug delivery. Uniquely, its excellent performance, namely, tuning size and surface morphology, excellent magnetism, extraordinary magnetically heat induction, promising biocompatibility, and specific targeting capacity, is essential for their effective utilization in clinical diagnosis and therapeutics of diseases. This review emphasizes the anticancer properties of nanoparticles of spinel ferrites with extra focus on the most recent literature. A critical review is provided on the latest applications of SFNPs in cancer therapy. Based on the results obtained from this review, SFNPs have the indefinite ability in cancer therapy through two mechanisms: (1) hyperthermia, where SFNPs, used as a hyperthermia mediator, elevated the tumor cells heat post-exposure to an external magnetic field and radiosensitizer during cancer radiotherapy; and (2) targeted drug delivery of cytotoxic drugs in tumor treatment. SFNPs induced apoptosis and cell death of cancer cells and prevented cancer cell proliferation.


2022 ◽  
Vol 130 (2) ◽  
pp. 723-749
Author(s):  
Muhammad Zafar ◽  
Muhammad Saif Ullah ◽  
Tareq Manzoor ◽  
Muddassir Ali ◽  
Kashif Nazar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document