thermodynamic geometry
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 36)

H-INDEX

22
(FIVE YEARS 5)

2021 ◽  
pp. 118395
Author(s):  
Jaime Jaramillo-Gutiérrez ◽  
J.L. López-Picón ◽  
José Torres-Arenas

2021 ◽  
Vol 136 (12) ◽  
Author(s):  
Saheb Soroushfar ◽  
Reza Saffari ◽  
Amare Abebe ◽  
Haidar Sheikhahmadi

2021 ◽  
pp. 2150212
Author(s):  
Sudhaker Upadhyay ◽  
Saheb Soroushfar ◽  
Reza Saffari

In this paper, we consider a static black hole in [Formula: see text] gravity. We recapitulate the expression for corrected thermodynamic entropy of this black hole due to small fluctuations around equilibrium. Also, we study the geometrothermodynamics (GTD) of this black hole and investigate the adaptability of the curvature scalar of geothermodynamic methods with phase transition points of this black hole. Moreover, we study the effect of correction parameter on thermodynamic behavior of this black hole. We observe that the singular point of the curvature scalar of Ruppeiner metric coincides completely with zero point of the heat capacity and the deviation occurs with increasing correction parameter.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Daniele Lanteri ◽  
Shen-Song Wan ◽  
Alfredo Iorio ◽  
Paolo Castorina

AbstractWe study the thermodynamics of spherically symmetric, neutral and non-rotating black holes in conformal (Weyl) gravity. To this end, we apply different methods: (i) the evaluation of the specific heat; (ii) the study of the entropy concavity; (iii) the geometrical approach to thermodynamics known as thermodynamic geometry; (iv) the Poincaré method that relates equilibrium and out-of-equilibrium thermodynamics. We show that the thermodynamic geometry approach can be applied to conformal gravity too, because all the key thermodynamic variables are insensitive to Weyl scaling. The first two methods, (i) and (ii), indicate that the entropy of a de Sitter black hole is always in the interval $$2/3\le S\le 1$$ 2 / 3 ≤ S ≤ 1 , whereas thermodynamic geometry suggests that, at $$S=1$$ S = 1 , there is a second order phase transition to an Anti de Sitter black hole. On the other hand, we obtain from the Poincaré method (iv) that black holes whose entropy is $$S < 4/3$$ S < 4 / 3 are stable or in a saddle-point, whereas when $$S>4/3$$ S > 4 / 3 they are always unstable, hence there is no definite answer on whether such transition occurs. Since thermodynamics geometry takes the view that the entropy is an extensive quantity, while the Poincaré method does not require extensiveness, it is valuable to present here the analysis based on both approaches, and so we do.


2021 ◽  
pp. 113033
Author(s):  
George Ruppeiner ◽  
Peter Mausbach ◽  
Helge-Otmar May

Sign in / Sign up

Export Citation Format

Share Document