strong lensing
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 83)

H-INDEX

46
(FIVE YEARS 9)

Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 19
Author(s):  
Giulia Cusin ◽  
Ruth Durrer ◽  
Irina Dvorkin

In this paper, we studied the gravitational lensing of gravitational wave events. The probability that an observed gravitational wave source has been (de-)amplified by a given amount is a detector-dependent quantity which depends on different ingredients: the lens distribution, the underlying distribution of sources and the detector sensitivity. The main objective of the present work was to introduce a semi-analytic approach to study the distribution of the magnification of a given source population observed with a given detector. The advantage of this approach is that each ingredient can be individually varied and tested. We computed the expected magnification as both a function of redshift and of the observedsource luminosity distance, which is the only quantity one can access via observation in the absence of an electromagnetic counterpart. As a case study, we then focus on the LIGO/Virgo network and on strong lensing (μ>1).


2021 ◽  
Vol 923 (1) ◽  
pp. 16
Author(s):  
R. Li ◽  
N. R. Napolitano ◽  
C. Spiniello ◽  
C. Tortora ◽  
K. Kuijken ◽  
...  

Abstract We present 97 new high-quality strong lensing candidates found in the final ∼350 deg2 that complete the full ∼1350 deg2 area of the Kilo-Degree Survey (KiDS). Together with our previous findings, the final list of high-quality candidates from KiDS sums up to 268 systems. The new sample is assembled using a new convolutional neural network (CNN) classifier applied to r-band (best-seeing) and g, r, and i color-composited images separately. This optimizes the complementarity of the morphology and color information on the identification of strong lensing candidates. We apply the new classifiers to a sample of luminous red galaxies (LRGs) and a sample of bright galaxies (BGs) and select candidates that received a high probability to be a lens from the CNN (P CNN). In particular, setting P CNN > 0.8 for the LRGs, the one-band CNN predicts 1213 candidates, while the three-band classifier yields 1299 candidates, with only ∼30% overlap. For the BGs, in order to minimize the false positives, we adopt a more conservative threshold, P CNN > 0.9, for both CNN classifiers. This results in 3740 newly selected objects. The candidates from the two samples are visually inspected by seven coauthors to finally select 97 “high-quality” lens candidates which received mean scores larger than 6 (on a scale from 0 to 10). We finally discuss the effect of the seeing on the accuracy of CNN classification and possible avenues to increase the efficiency of multiband classifiers, in preparation of next-generation surveys from ground and space.


2021 ◽  
Vol 923 (1) ◽  
pp. 101
Author(s):  
Jinhyub Kim ◽  
M. James Jee ◽  
John P. Hughes ◽  
Mijin Yoon ◽  
Kim HyeongHan ◽  
...  

Abstract We present an improved weak-lensing (WL) study of the high-z (z = 0.87) merging galaxy cluster ACT-CL J0102–4915 (“El Gordo”) based on new wide-field Hubble Space Telescope imaging data. The new imaging data cover the ∼3.5 × ∼3.5 Mpc region centered on the cluster and enable us to detect WL signals beyond the virial radius, which was not possible in previous studies. We confirm the binary mass structure consisting of the northwestern (NW) and southeastern (SE) subclusters and the ∼2σ dissociation between the SE mass peak and the X-ray cool core. We obtain the mass estimates of the subclusters by simultaneously fitting two Navarro–Frenk–White (NFW) halos without employing mass–concentration relations. The masses are M 200 c NW = 9.9 − 2.2 + 2.1 × 1014 and M 200 c SE = 6.5 − 1.4 + 1.9 × 1014 M ⊙ for the NW and SE subclusters, respectively. The mass ratio is consistent with our previous WL study but significantly different from the previous strong-lensing results. This discrepancy is attributed to the use of extrapolation in strong-lensing studies because the SE component possesses a higher concentration. By superposing the two best-fit NFW halos, we determine the total mass of El Gordo to be M 200 c = 2.13 − 0.23 + 0.25 × 1015 M ⊙, which is ∼23% lower than our previous WL result [M 200c = (2.76 ± 0.51) × 1015 M ⊙]. Our updated mass is a more direct measurement, since we are not extrapolating to R 200c as in all previous studies. The new mass is compatible with the current ΛCDM cosmology.


2021 ◽  
Vol 923 (1) ◽  
pp. 14
Author(s):  
R. Abbott ◽  
T. D. Abbott ◽  
S. Abraham ◽  
F. Acernese ◽  
K. Ackley ◽  
...  

Abstract We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and (4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses.


2021 ◽  
Vol 921 (2) ◽  
pp. 154
Author(s):  
A. Renske A. C. Wierda ◽  
Ewoud Wempe ◽  
Otto A. Hannuksela ◽  
Léon V. E. Koopmans ◽  
Chris Van Den Broeck

Author(s):  
G. V. Pignataro ◽  
P. Bergamini ◽  
M. Meneghetti ◽  
E. Vanzella ◽  
F. Calura ◽  
...  

Author(s):  
Andrés Lizardo ◽  
Mario H Amante ◽  
Miguel A García-Aspeitia ◽  
Juan Magaña ◽  
V Motta

Abstract Using a new sub-sample of observed strong gravitational lens systems, for the first time, we present the equation for the angular diameter distance in the y-redshift scenario for cosmography and use it to test the cosmographic parameters. In addition, we also use the observational Hubble data from cosmic chronometers and a Joint analysis of both data is performed. Among the most important conclusions are that this new analysis for cosmography using Strong Lensing Systems is equally competitive to constrain the cosmographic parameters as others presented in literature. Additionally, we present the reconstruction of the effective equation of state inferred from our samples, showing that at z = 0 those reconstructions from Strong Lensing Systems and Joint analysis are in concordance with the standard model of cosmology.


Sign in / Sign up

Export Citation Format

Share Document