square plate
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 48)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Т.П. Кныш ◽  
М.В. Сухотерин ◽  
С.О. Барышников

Задача изгиба прямоугольной панели обшивки от действия распределенной по оси симметрии поперечной нагрузки не имеет точного решения в конечном виде в виду сложности краевых условий и вида нагрузки. Использование другими авторами различных приближенных методов оставляет открытым вопрос о точности полученных результатов. Целью исследования является получение точного решения с помощью гиперболо-тригонометрических рядов по двум координатам. Для этого используется метод бесконечной суперпозиции указанных рядов, которые в отдельности удовлетворят лишь части граничных условий. Порождаемые ими невязки взаимно компенсируются в ходе итерационного процесса и стремятся к нулю. Частное решения представлено двойным рядом Фурье. Точное решение достигается увеличением количества членов в рядах и числа итераций. При достижении заданной точности процесс прекращается. Получены численные результаты для прогибов и изгибающих моментов для квадратной пластины при различной длине загруженной части оси пластины. Представлены 3D-формы изогнутой поверхности пластины и эпюры изгибающих моментов. The problem of bending a rectangular skin panel from the action of a transverse load distributed along the axis of symmetry does not have an exact solution in the final form due to the complexity of the boundary conditions and the type of load. The use of various approximate methods by other authors leaves open the question of the accuracy of the results obtained. The aim of the study is to obtain an exact solution using hyperbolo-trigonometric series in two coordinates. To do this, we use the method of infinite superposition of these series, which individually satisfy only part of the boundary conditions. The residuals generated by them are mutually compensated during the iterative process and tend to zero. The quotient of the solution is represented by a double Fourier series. The exact solution is achieved by increasing the number of terms in the series and the number of iterations. When the specified accuracy is reached, the process stops. Numerical results are obtained for deflections and bending moments for a square plate with different lengths of the loaded part of the plate axis. 3D shapes of the curved surface of the plate and diagrams of bending moments are presented.


2021 ◽  
Vol 51 (12) ◽  
pp. 124611
Author(s):  
Jian QIN ◽  
YanBo WEN ◽  
XiangYao MENG ◽  
RuiYuan HUANG

2021 ◽  
pp. 741-751
Author(s):  
A. I. Dhatrak ◽  
L. S. Amrutkar ◽  
S. W. Thakare ◽  
R. R. Badnakhe

Author(s):  
Hassan Asadigorji ◽  
Ardeshir Karami Mohammadi

Abstract In this paper, a nonlinear energy sink is used to improve the dynamic behavior of a square plate in supersonic flow. The plate is examined with different boundary conditions. The effect of changing the parameters and installation location of nonlinear energy sink on improving the dynamic behavior of the plate has been studied. The governing equations are first obtained using Von Kármán’s plate theory and piston theory, and then discretized using the Rayleigh–Ritz process. These equations are then solved using the fourth-order Runge–Kutta method. Time history curves, phase portraits, Poincaré maps, and bifurcation diagrams were used to investigate the dynamic behavior and impact of nonlinear energy sink. The results show that the dynamic behavior of the plate is very complex in some cases, but with proper use of nonlinear energy sinks, this behavior can be improved.


Author(s):  
Leon Kellner ◽  
Wenjun Lu ◽  
Sören Ehlers ◽  
Knut V. Høyland

AbstractThe size of the fully developed process zone (FDPZ) is needed for the arrangement of displacement sensors in fracture experiments and choosing element size in numerical models using the cohesive element method (CEM). However, the FDPZ size is generally not known beforehand. Analytical solutions for the exact FDPZ size only exist for highly idealised bodies, e.g. semi-infinite plates. With respect to fracture testing, the CEM is also a potential tool to extrapolate laboratory test results to full-scale while considering the size effect. A numerical CEM-based model is built to compute the FDPZ size for an edge crack in a finite square plate of different lengths spanning several magnitudes. It is validated against existing analytical solutions. After successful validation, the FDPZ size of finite plates is calculated with the same numerical scheme. The (FDPZ) size for finite plates is influenced by the cracked plate size and physical crack length. Maximum cohesive zone sizes are given for rectangular and linear softening. Further, for this setup, the CEM-based numerical model captures the size effect and can be used to extrapolate small-scale test results to full-scale.


2021 ◽  
Vol 527 ◽  
pp. 167730
Author(s):  
S.V. Komogortsev ◽  
S.V. Stolyar ◽  
L.A. Chekanova ◽  
R.N. Yaroslavtsev ◽  
O.A. Bayukov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document