sample enrichment
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 18)

H-INDEX

27
(FIVE YEARS 2)

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Marta Kowalska ◽  
Dominik Popiel ◽  
Martyna Walter ◽  
Remigiusz Bąchor ◽  
Monika Biernat ◽  
...  

Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2155
Author(s):  
Stephanie I. Pearlman ◽  
Eric M. Tang ◽  
Yuankai K. Tao ◽  
Frederick R. Haselton

In developing countries, the most common diagnostic method for tuberculosis (TB) is microscopic examination sputum smears. Current assessment requires time-intensive inspection across the microscope slide area, and this contributes to its poor diagnostic sensitivity of ≈50%. Spatially concentrating TB bacteria in a smaller area is one potential approach to improve visual detection and potentially increase sensitivity. We hypothesized that a combination of magnetic concentration and induced droplet Marangoni flow would spatially concentrate Mycobacterium tuberculosis on the slide surface by preferential deposition of beads and TB–bead complexes in the center of an evaporating droplet. To this end, slide substrate and droplet solvent thermal conductivities and solvent surface tension, variables known to impact microfluidic flow patterns in evaporating droplets, were varied to select the most appropriate slide surface coating. Optimization in a model system used goniometry, optical coherence tomography, and microscope images of the final deposition pattern to observe the droplet flows and maximize central deposition of 1 μm fluorescent polystyrene particles and 200 nm nanoparticles (NPs) in 2 μL droplets. Rain-X® polysiloxane glass coating was identified as the best substrate material, with a PBS-Tween droplet solvent. The use of smaller, 200 nm magnetic NPs instead of larger 1 μm beads allowed for bright field imaging of bacteria. Using these optimized components, we compared standard smear methods to the Marangoni-based spatial concentration system, which was paired with magnetic enrichment using iron oxide NPs, isolating M. bovis BCG (BCG) from samples containing 0 and 103 to 106 bacilli/mL. Compared to standard smear preparation, paired analysis demonstrated a combined volumetric and spatial sample enrichment of 100-fold. With further refinement, this magnetic/Marangoni flow concentration approach is expected to improve whole-pathogen microscopy-based diagnosis of TB and other infectious diseases.


2021 ◽  
Vol 1149 ◽  
pp. 338212
Author(s):  
Mao Fukuyama ◽  
Lin Zhou ◽  
Tetsuo Okada ◽  
Kristina V. Simonova ◽  
Mikhail Proskurnin ◽  
...  

Proteomes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Joel R. Steele ◽  
Carly J. Italiano ◽  
Connor R. Phillips ◽  
Jake P. Violi ◽  
Lisa Pu ◽  
...  

Proteinopathies are diseases caused by factors that affect proteoform conformation. As such, a prevalent hypothesis is that the misincorporation of noncanonical amino acids into a proteoform results in detrimental structures. However, this hypothesis is missing proteomic evidence, specifically the detection of a noncanonical amino acid in a peptide sequence. This review aims to outline the current state of technology that can be used to investigate mistranslations and misincorporations whilst framing the pursuit as Misincorporation Proteomics (MiP). The current availability of technologies explored herein is mass spectrometry, sample enrichment/preparation, data analysis techniques, and the hyphenation of approaches. While many of these technologies show potential, our review reveals a need for further development and refinement of approaches is still required.


Author(s):  
Veronica R. Campbell ◽  
Mariam S. Carson ◽  
Amelia Lao ◽  
Kajal Maran ◽  
Eric J. Yang ◽  
...  

Foodborne illness is a major public health issue that results in millions of global infections annually. The burden of such illness sits mostly with developing countries, as access to advanced laboratory equipment and skilled lab technicians, as well as consistent power sources, is limited and expensive. Current gold standards in foodborne pathogen screening involve labor-intensive sample enrichment steps, pathogen isolation and purification, and costly readout machinery. Overall, time to detection can take multiple days, excluding the time it takes to ship samples to off-site laboratories. Efforts have been made to simplify the workflow of such tests by integrating multiple steps of foodborne pathogen screening procedures into a singular device, as well as implementing more point-of-need readout methods. In this review, we explore recent advancements in developing point-of-need devices for foodborne pathogen screening. We discuss the detection of surface markers, nucleic acids, and metabolic products using both paper-based and microfluidic devices, focusing primarily on developments that have been made between 2015 and mid-2020.


2020 ◽  
Vol 49 (8) ◽  
pp. 974-977
Author(s):  
Arinori Inagawa ◽  
Nozomi Masuda ◽  
Toshiyuki Nikata ◽  
Nobuo Uehara

Sign in / Sign up

Export Citation Format

Share Document