loss coefficients
Recently Published Documents


TOTAL DOCUMENTS

371
(FIVE YEARS 40)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Stanislav Tkachenko ◽  
Olga Vlasenko ◽  
Natalia Rezydent

The experimental investigations of the intensity of the heat exchange between the internal surface of the thin-wall metal cylinder and the studied liquid medium were carried out in conditions of its cooling (heating), i.e. under nonstationary heat exchange conditions. The existence of the regular thermal mode in the liquid medium surrounded by the thin-wall metal cylinder has been established. Local in time heat loss coefficients were derived using appropriate dimensionless equations for the stationary mode conditions of heat-exchange in a large volume. Heat loss coefficients were determined using regular thermal mode methods and computational-&-experimental heat loss coefficients. The changes in the relative values of the heat loss coefficients were analyzed using the method of regular thermal mode and computational-&-experimental heat loss coefficients. The deviations in the values of given coefficients in time are mainly within ± 10 %. Relative values of the heat loss coefficients deviate within ± 40 % using appropriate dimensionless equations for the conditions of the stationary mode of heat exchange in a large volume. This conclusion is natural because the cooling (heating) process is nonstationary.


Author(s):  
Q. Li ◽  
J. Xia ◽  
M. Zhou ◽  
S. Deng ◽  
H. Zhang ◽  
...  

Abstract Motivated by the observation that vortex flow structure was evident in the energy loss at the surcharged junction manhole due to changes of hydraulic and geometrical parameters, a physical model was used to calculate energy loss coefficients and investigate the relationship between flow structure and energy loss at the surcharged three-way junction manhole. The effects of the flow discharge ratio, the connected angle between two inflow pipes, the manhole geometry, and the downstream water depth on the energy loss were analyzed based on the quantified energy loss coefficients and the identified flow structure. Moreover, two empirical formulae for head loss coefficients were validated by the experimental data. Results indicate that the effect of flow discharge ratio and connected angle are significant, while the effect of downstream water depth is not obvious. With the increase of the lateral inflow discharge, the flow velocity distribution and vortex structure are both enhanced. It is also found that a circular manhole can reduce local energy loss when compared to a square manhole. In addition, the tested empirical formulae can reproduce the trend of total head loss coefficient.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8553
Author(s):  
Miquel Torrent ◽  
Pedro Javier Gamez-Montero ◽  
Esteban Codina

This article presents the modeling, simulation and experimental validation of the movement of the floating bearing bushing in an external gear pump. As a starting point, a complete pump parameterization was carried out through standard tests, and these parameters were used in a first bond graph model in order to simulate the gear pump behavior. This model was experimentally validated under working conditions in field tests. Then, a sophisticated bond graph model of the movement of the floating bushing was developed from the equations that define its lubrication. Finally, as a result, both models were merged by integrating the dynamics of the floating bushing bearing with the variation of the characteristic parameters (loss coefficients). Finally, the final model was experimentally validated both in laboratory and field tests by assembling the pump in a drilling machine to drive the auxiliary movements. The novelty of this article is the conception and construction of a simple and experimentally validated tool for the study of a gear pump, which relates its macroscopic behavior as a black box (defined by the loss coefficients) to the internal changes of the unit (defined by its internal lubrication).


Author(s):  
Dag Lindholm ◽  
Torunn Kjeldstad ◽  
Josefine Selj ◽  
Erik Stensrud Marstein ◽  
Hallvard Gustav Fjær

2021 ◽  
Author(s):  
Kiran Lankalapalli ◽  
Stephen Idem

Author(s):  
Ponnusamy Sathyakala ◽  
Sai Sundara Krishnan Gangadharan ◽  
Balaji Kalaiarasu

In this paper, Energy, Entropy and Exergy (EEE) analysis of flat plate solar collector is studied through a mathematical model by considering the overall loss coefficient as a non-constant parameter. The overall loss coefficient is calculated by minimizing the top loss coefficient using Lagrange multiplier optimization technique and also by empirical formulas. Further, energy efficiency, entropy generation, exergy destruction and exergy efficiency of the flat plate solar collector are also determined for the both aforesaid overall loss coefficients. The exergy efficiency of the proposed model has been doubled, when compared with the experimental measurements in the earlier literature. Also, comparing the proposed methods, it is observed that exergy efficiency obtained by using the minimal top loss coefficient is reasonably high and it enhances the overall collector’s efficiency.


2021 ◽  
Vol 1 (1) ◽  
pp. 46-55
Author(s):  
Ahmad Yani ◽  
Ratnawati ◽  
Ardyanto Darmanto

PVC pipe (polyvinyl chloride), galvanized, and stainless steel are types of pipes that are widely used, especially for delivering clean water to people's homes or in the industrialized world. This research was conducted by collecting data such as: flow rate (Q), pressure height (h), pipe flow velocity (v), time (s), and head loss (H), data were collected and calculated to determine pressure loss, effect variations in discharge changes and loss coefficients. From the experimental results, it was found that for the narrowing of the cross section at a discharge of 25 liters / second the value of the head loss was greater, which was located in the galvanic pipe, namely 0.09568, then followed by a discharge of 20 liters / second the value was 0.06454 and a discharge of 15 ltr / second the value was 0 , 03723. While the smallest value in panampang narrowing lies in PVC pipe, at a discharge of 25 ltr / second the value is 0.05957, at a discharge of 20 ltr / second the value is 0.03989 and at a discharge of 15 ltr / second the value is 0.02303. Likewise in the expansion of the cross-section, the greatest value lies in the galvanized pipe. For a debit of 25 ltr / second the value obtained is 0.03526, a debit of 20 ltr / second the value is 0.02355, a debit of 15 ltr / second the value is 0.01352. While the smallest value is located on the stainless steel pipe, the value is 0.02688 for the flow rate of 25 liters / second, the value for 20 liters / second is 0.01811, the value for 15 liters / second is 0.01044.


Author(s):  
Karsten Tawackolian ◽  
Martin Kriegel

AbstractThis study looks to find a suitable turbulence model for calculating pressure losses of ventilation components. In building ventilation, the most relevant Reynolds number range is between 3×104 and 6×105, depending on the duct dimensions and airflow rates. Pressure loss coefficients can increase considerably for some components at Reynolds numbers below 2×105. An initial survey of popular turbulence models was conducted for a selected test case of a bend with such a strong Reynolds number dependence. Most of the turbulence models failed in reproducing this dependence and predicted curve progressions that were too flat and only applicable for higher Reynolds numbers. Viscous effects near walls played an important role in the present simulations. In turbulence modelling, near-wall damping functions are used to account for this influence. A model that implements near-wall modelling is the lag elliptic blending k-ε model. This model gave reasonable predictions for pressure loss coefficients at lower Reynolds numbers. Another example is the low Reynolds number k-ε turbulence model of Wilcox (LRN). The modification uses damping functions and was initially developed for simulating profiles such as aircraft wings. It has not been widely used for internal flows such as air duct flows. Based on selected reference cases, the three closure coefficients of the LRN model were adapted in this work to simulate ventilation components. Improved predictions were obtained with new coefficients (LRNM model). This underlined that low Reynolds number effects are relevant in ventilation ductworks and give first insights for suitable turbulence models for this application. Both the lag elliptic blending model and the modified LRNM model predicted the pressure losses relatively well for the test case where the other tested models failed.


Sign in / Sign up

Export Citation Format

Share Document