human hscs
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Merve Aksoz ◽  
Grigore-Aristide Gafencu ◽  
Bilyana Stoilova Stoilova ◽  
Mario Buono ◽  
Yiran Meng ◽  
...  

Hematopoietic stem cells (HSC) reconstitute multi-lineage human hematopoiesis after clinical bone marrow transplantation and are the cells-of-origin of hematological malignancies. Though HSC provide multi-lineage engraftment, individual murine HSCs are lineage-biased and contribute unequally to blood cell lineages. Now, by combining xenografting of molecularly barcoded adult human bone marrow (BM) HSCs and high-throughput single cell RNA sequencing we demonstrate that human individual BM HSCs are also functionally and transcriptionally lineage biased. Specifically, we identify platelet-biased and multi-lineage human HSCs. Quantitative comparison of transcriptomes from single HSCs from young, and aged, BM show that both the proportion of platelet-biased HSCs, and their level of transcriptional platelet priming, increases with age. Therefore, platelet-biased HSCs, as well as their increased prevalence and elevated transcriptional platelet priming during ageing, are conserved between human and murine hematopoiesis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260721
Author(s):  
Brian Rady ◽  
Takahiro Nishio ◽  
Debanjan Dhar ◽  
Xiao Liu ◽  
Mark Erion ◽  
...  

Non-alcoholic steatohepatitis (NASH) results, in part, from the interaction of metabolic derangements with predisposing genetic variants, leading to liver-related complications and mortality. The strongest genetic determinant is a highly prevalent missense variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3 p.I148M). In human liver hepatocytes PNPLA3 localizes to the surface of lipid droplets where the mutant form is believed to enhance lipid accumulation and release of pro-inflammatory cytokines. Less is known about the role of PNPLA3 in hepatic stellate cells (HSCs). Here we characterized HSC obtained from patients carrying the wild type (n = 8 C/C) and the heterozygous (n = 6, C/G) or homozygous (n = 6, G/G) PNPLA3 I148M and investigated the effect of genotype and PNPLA3 downregulation on baseline and TGF-β-stimulated fibrotic gene expression. HSCs from all genotypes showed comparable baseline levels of PNPLA3 and expression of the fibrotic genes α-SMA, COL1A1, TIMP1 and SMAD7. Treatment with TGF-β increased PNPLA3 expression in all 3 genotypes (~2-fold) and resulted in similar stimulation of the expression of several fibrogenic genes. In primary human HSCs carrying wild-type (WT) PNPLA3, siRNA treatment reduced PNPLA3 mRNA by 79% resulting in increased expression of α-SMA, Col1a1, TIMP1, and SMAD7 in cells stimulated with TGF-β. Similarly, knock-down of PNPLA3 in HSCs carrying either C/G or G/G genotypes resulted in potentiation of TGF-β induced expression of fibrotic genes. Knockdown of PNPLA3 did not impact fibrotic gene expression in the absence of TGF-β treatment. Together, these data indicate that the presence of the I148M PNPLA3 mutation in HSC has no effect on baseline activation and that downregulation of PNPLA3 exacerbates the fibrotic response irrespective of the genotype.


Author(s):  
Nicholas Holdreith ◽  
Grace Y Lee ◽  
Vemika Chandra ◽  
Carlo Salas Salinas ◽  
Peter Nicholas ◽  
...  

Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for a variety of hematological diseases. Allogenic HSCT requires hematopoietic stem cells (HSCs) from matched donors and comes with cytotoxicity and mortality. Recent advances in genome modification of HSCs have demonstrated the possibility of using autologous HSCT-based gene therapy to cure monogenic diseases, such as the inherited bone marrow failure (BMF) syndrome Fanconi Anemia (FA). However, for FA and other BMF syndromes insufficient HSC numbers with functional defects results in delayed hematopoietic recovery and increased risk of graft failure. We and others previously identified the adaptor protein Lnk (Sh2b3) as a critical negative regulator of murine HSC homeostasis. However, whether LNK (SH2B3) controls human HSCs has not been studied. Here, we demonstrate that depletion of LNK via lentiviral expression of miR30-based short hairpin RNAs (shRNAs) resulted in robust expansion of transplantable human HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Importantly, LNK depletion enhanced cytokine mediated JAK/STAT activation in CD34+ hematopoietic stem and progenitor cells (HSPCs). Moreover, we demonstrate that LNK depletion expands primary HSPCs associated with FA. In xenotransplant, engraftment defects of FANCD2-depleted FA-like HSCs were markedly improved by LNK inhibition. Finally, targeting LNK in primary bone marrow HSPCs from FA patients enhanced their colony forming potential in vitro. Together, these results demonstrate the potential of targeting LNK to expand HSCs to improve HSCT and HSCT-based gene therapy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2156-2156
Author(s):  
Kuiying Ma ◽  
Riguo Fang ◽  
Lingling Yu ◽  
Yongjian Zhang ◽  
Chao Li ◽  
...  

Abstract Gene-modified hematopoietic stem cells (HSCs) therapy has demonstrated remarkable success for the treatment of inherited blood disorders. As the origin of hematologic hierarchy, HSCs play an essential role in sustaining life-long hematopoiesis. HSCs identification via reliable and robust bio-markers could facilitate the development of HSC gene therapy. Previous studies showed that long-term hematopoietic stem cells (LT-HSCs) were enriched in the Lin -CD34 +CD38 -CD45RA -CD90 +CD49f + population which could support long-term hematopoietic reconstitution. However, several of these surface markers proved to be unreliable when ex vivo culturing, such as CD38 and CD49f. Thus, HSCs characterization is still hindered by lacking bona-fide bio-markers, and consequently identification of long-term HSCs still needs time-consuming in vivo transplantation. To this end, we performed in vitro screening and comprehensive functional evaluation to identify a novel surface marker of human HSCs. During initial screening, a cell surface antigen screen panel (including 242 human cell surface markers) and human CD34 and CD90 antibodies were used to perform flow cytometry analysis on CD34 + HSPCs enriched from umbilical cord blood. Compared with CD34 + cell population, we found that CD66 (a,c,d,e), CD200 and CD48 positive cells were more enriched in CD34 +CD90 + subset. Previous studies indicated that HSCs cannot be maintained during in vitro culturing. By tracking these candidate surface markers based on this principle, CD66e was selected as the potential HSCs bio-marker. Next, we examined the in vivo hematologic repopulating potential of HSCs by limiting dilution assay (LDA) on immune-deficient mouse model. We sorted CD66e + and CD66e - subsets from CD34 +CD90 +CD45RA - subpopulation, and transplanted into irradiated NOD-scid Il2rg −/− (NPG) mice respectively. At week16 post-transplantation, in contrast to the CD66e - group, CD66e + cells exhibited significantly higher reconstitution in peripheral blood (PB), bone marrow (BM) and spleen. Engraftment dynamics revealed that the CD66e - group were only capable of reconstitution 4 weeks post transplantation, even at the highest initial cell dose. Moreover, the CD66e - group displayed impaired multi-lineage differentiation pattern, especially in PB and BM samples, while the CD66e + group presented a robust multi-lineage reconstitution. Notably, LDA results showed that the CD66e + cells within CD34 +CD90 +CD45RA - population contained 1 out of 529 SCID repopulating cells (SRC), almost 60-fold greater than the CD66e - fraction. To further investigate the long-term repopulating potential of the CD66e + cells, we performed the secondary transplantation collected from the BM cells of primary recipients. CD66e + cells presented significant higher repopulating activity than CD66e- subset in the secondary recipients. These findings reveal that the major cells with homing and long-term reconstitution capacity among CD34 +CD90 +CD45RA - cells were CD66e positive. In order to determine the transcriptional profile of CD66e + cells, we performed RNA-sequencing analysis using the population of CD34 + cells, CD34 +CD90 +CD45RA - cells, CD66e + and CD66e - cells within CD34 +CD90 +CD45RA - subset. Remarkably, compared with other groups, the CD66e + cells displayed a bias toward the signature of HSC and early progenitors such as LMPP and CLP. Moreover, gene set enrichment analysis showed that hematopoietic lineage and long-term potentiation-related genes were highly enriched in the CD66e + cells. Further qRT-PCR experiment confirmed that several HSC-related genes were significantly higher expressed in CD34 +CD90 +CD45RA -CD66e + cells, compared to CD66e - population or CD34 + HSPCs, suggesting that the gene expression profile of CD66e + cells is reminiscent of HSC signature. Altogether, we demonstrate that CD66e is a robust functional HSC bio-marker that CD66e-positive population among CD34 +CD90 +CD45RA - cells exhibit typical HSC signature, enhanced in vivo engraftment potential and robust multilineage differentiation pattern, which will provide an invaluable tool to investigate the origin of human HSCs, paving the way for the therapeutic application. Figure 1 Figure 1. Disclosures Fang: EdiGene, Inc.: Current Employment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2166-2166
Author(s):  
Abdul-Habib Rahimi ◽  
Reka Toth ◽  
Dieter Weichenhan ◽  
Julia K. Herzig ◽  
Ekaterina Panina ◽  
...  

Abstract One of the key risk factors for developing acute myeloid leukemia (AML) is advanced age. With a median age of approximately 68 years at diagnosis, AML predominantly affects an elderly population with poor prognosis. Understanding age-related mechanisms preceding AML might foster the development of new therapeutic approaches targeting more specifically pre-malignant genetic or epigenetic changes. Age-related clonal hematopoiesis (ARCH or CHIP) increases the risk of developing leukemia and predominantly affects genes encoding epigenetic modifiers such as DNMT3A or TET2. Changes in the DNA methylome are a characteristic feature of AML and epigenetic therapies with hypomethylating agents are approved for therapy. As demonstrated in murine models, DNA methylation can shape hematopoietic stem cell (HSC) differentiation and aging phenotypes. Here, we aimed to examine genome-wide changes in the DNA methylome and transcriptome of aging human HSCs. Previous studies of aging-related changes in HSC methylomes used murine HSCs, covered only a fraction of the human methylome or were biased towards promoters and CpG islands. Here, we took advantage of tagmentation-based whole-genome bisulfite sequencing (TWGBS) to cover all CpG sites genome-wide using small amounts of input DNA (Wang et al., Nature protocols 2013). We purified HSCs from cord blood (n=3) and bone marrow of young (n=5, defined as age 23-27) and old donors (n=4, defined as age 63-72) using fluorescence-activated cell sorting (FACS) with an 8-color HSC/LSC-panel (Zeijlemaker et al., Leukemia 2016). None of the samples carried CHIP mutations. With low-input RNA-Seq and TWGBS we successfully obtained an integrative data set of the methylome and transcriptome of human HSCs from newborn, young and old individuals. We found that human HSCs show age-specific DNA methylation patterns that progressively change during aging and predominantly clusters with progressive and age-dependent degradation of methylation marks. In addition, we observed an increase in epigenetic heterogeneity in aged HSCs, extending into methylation-based proliferative clocks. We further revealed that wide-spread and progressive degradation of DNA methylation marks during HSC aging largely affected gene regulatory regions such as promoters, enhancers and transcription factor (TF) binding sites. These differentially methylated regions were highly enriched for genes playing a role in T-cell activation, cell adhesion and hematopoietic differentiation. Binding sites for transcription factors associated with AML, as for example the RUNX and GATA family of TFs were highly affected by age-dependent loss of DNA methylation. We further identified regulatory networks with target genes of transcriptional master regulators such as LYL1, regulating HSC pluripotency in combination with GATA2 and RUNX1, or ZNF639, upregulated in leukemic stem cells (LSC), or senescence and cell cycle genes to be upregulated upon aging. Besides known hallmark genes of HSC aging, such as CLU and SELP, we identified candidate genes to be differentially methylated such as HOX genes and other AML-associated genes. We observed deregulated gene expression in aged HSCs affecting HOXA cluster genes, as well as aging and longevity-associated pathways and G2M-checkpoint genes, relevant to DNA damage response. Correlation of epigenome and transcriptome identified a promising set of novel HSC aging-related candidate genes, putatively controlled by DNA methylation and functionally associated with apoptosis and cell adhesion. Furthermore, we discovered age-related epigenetic remodelling of the mTORC1 pathway, a central regulator of aging and cellular senescence. Pharmacological inhibition of mTORC1 using rapamycin was shown to increase lifespan in several model organisms. In summary, we unravel a comprehensive roadmap of the changing epigenome and transcriptome of human HSCs throughout human lifespan. This enables us to precisely pinpoint DNA methylation marks that progressively degrade during aging. Restoring these DNA methylation marks in aged HSCs could potentially ameliorate age-related decline in HSC function and might protect against leukemic transformation. Disclosures Heuser: Daiichi Sankyo: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer Pharma AG: Research Funding; Karyopharm: Research Funding; Astellas: Research Funding; AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Jazz: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Tolremo: Membership on an entity's Board of Directors or advisory committees; BMS/Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; BergenBio: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Membership on an entity's Board of Directors or advisory committees, Research Funding. Buske: Pfizer: Honoraria, Speakers Bureau; Celltrion: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; MSD: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bayer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Research Funding.


Author(s):  
Elham Shakerian ◽  
Narges Mohammad Taghvaei ◽  
Zohre Askari ◽  
Reza Afarin

Background: Activated hepatic stellate cells (HSCs) are the primary mediators in the progression of hepatic fibrosis. The activation of toll-like receptor 4 (TLR4) signaling leads to the downregulation of the transmembrane inhibitory transforming growth factor-beta (TGF-β) pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) on HSCs. Fibroblast growth factor 21 (FGF21) is a natural secretory protein in the body with effects, such as the reduction of fat accumulation and oxidation of lipids; however; no study has investigated FGF21 ability to prevent the progression of liver fibrosis. Objectives: This study aimed to examine the beneficial effects of FGF21 to reduce cholesterol-activated human HSCs. Methods: The human HSCs were incubated in media containing different concentrations of cholesterol, including 25, 50, 75, 100, 125, and 150 μM, for 24 h and then incubated with FGF21 for 24 h. Total ribonucleic acids were extracted and reversely transcribed into complementary deoxyribonucleic acid. A quantitative real-time polymerase chain reaction was performed in this study. Results: The results showed that the messenger ribonucleic acid (mRNA) expression of TGF-β, collagen, type I, alpha 1 (collagen1α), and TLR4 genes increased significantly in the presence of cholesterol (75 and 100 μM), compared to that of the control group (* P < 0.05, ** P < 0.01, and *** P < 0.001); nevertheless, the mRNA expression of the BAMBI gene significantly reduced, compared to that of the control group (* P < 0.05). The FGF21 significantly reduced the mRNA expression of TGF-β, collagen1α, and TLR4 genes (# P < 0.05). The mRNA expression of the BAMBI gene significantly increased with FGF21 (# P < 0.05). Conclusions: It was concluded that the treatment with FGF21 reduces the cholesterol-activated HSCs by decreasing the mRNA expression of the TLR4, TGF-β, and collagen1α genes and increasing the mRNA expression of the BAMBI gene.


Blood ◽  
2021 ◽  
Author(s):  
Bernhard Lehnertz ◽  
Jalila Chagraoui ◽  
Tara MacRae ◽  
Elisa Tomellini ◽  
Sophie Corneau ◽  
...  

Hematopoietic stem cells (HSCs) sustain blood cell homeostasis throughout life and can regenerate all blood lineages following transplantation. Despite this clear functional definition, highly enriched isolation of human HSCs can currently only be achieved through combinatorial assessment of multiple surface antigens. While several transgenic HSC reporter mouse strains have been described, no analogous approach to prospectively isolate human HSCs has been reported. To identify genes with the most selective expression in human HSCs, we profiled population- and single-cell transcriptomes of un-expanded and ex vivo cultured cord blood-derived HSPCs as well as peripheral blood, adult bone marrow, and fetal liver. Based on these analyses, we propose the master transcription factor HLF (Hepatic Leukemia Factor) as one of the most specific HSC marker genes. To directly track its expression in human hematopoietic cells, we developed a genomic HLF reporter strategy, capable of selectively labeling the most immature blood cells based on a single engineered parameter. Most importantly, HLF-expressing cells comprise all of the stem cell activity in culture and in vivo during serial transplantation. Taken together, these results experimentally establish HLF as a defining gene of the human hematopoietic stem cell state and outline a new approach to continuously mark these cells with high fidelity.


2021 ◽  
Author(s):  
Nerea Berastegui ◽  
Marina Ainciburu ◽  
Juan P. Romero ◽  
Ana Alfonso-Pierola ◽  
Céline Philippe ◽  
...  

ABSTRACTMyelodysplastic syndromes (MDS) are clonal hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis with increased incidence in elderly individuals. Genetic alterations do not fully explain the molecular pathogenesis of the disease, indicating that other types of lesions may play a role in its development. In this work, we analyzed the transcriptional lesions of human HSCs, demonstrating how aging and MDS are characterized by a complex transcriptional rewiring that manifests as diverse linear and non-linear transcriptional dynamisms. While aging-associated lesions seemed to predispose elderly HSCs to myeloid transformation, disease-specific alterations may be involved in triggering MDS development. Among MDS-specific lesions, we detected the overexpression of the transcription factor DDIT3. Exogenous upregulation of DDIT3 in human healthy HSCs induced an MDS-like transcriptional state, and a delay in erythropoiesis, with an accumulation of cells in early stages of erythroid differentiation, as determined by single-cell RNA-sequencing. Increased DDIT3 expression was associated with downregulation of transcription factors required for normal erythropoiesis, such as KLF1, TAL1 or SOX6, and with a failure in the activation of their erythroid transcriptional programs. Finally, DDIT3 knockdown in CD34+ cells from MDS patients was able to restore erythropoiesis, as demonstrated by immunophenotypic and transcriptional profiling. These results demonstrate that DDIT3 may be a driver of MDS transformation, and a potential therapeutic target to restore the inefficient erythropoiesis characterizing these patients.KEY POINTSHuman HSCs undergo a complex transcriptional rewiring in aging and MDS that may contribute to myeloid transformation.DDIT3 overexpression induces a failure in the activation of erythroid transcriptional programs, leading to inefficient erythropoiesis.


2021 ◽  
Author(s):  
Zuoning Han ◽  
Yanling Ma ◽  
Gary Cao ◽  
Zhengping Ma ◽  
Ruihua Chen ◽  
...  

Hepatic stellate cells (HSCs) are thought to play key roles in the development of liver fibrosis.  Extensive evidence has established the concept that αV integrins are involved in the activation of latent transforming growth factor β (TGF-β), a master regulator of the fibrotic signaling cascade.  Based on mRNA and protein expression profiling data, we found that αVβ1 integrin is the most abundant member of the αV integrin family in either quiescent or TGF-β1-activated primary human HSCs.  Unexpectedly, either a selective αVβ1 inhibitor, Compound 8 (C8), or a pan-αV integrin inhibitor, GSK3008348, decreased TGF-β1-activated procollagen I production in primary human HSCs, in which the role of β1 integrin was confirmed by ITGB1 siRNA. In contrast to an Activin receptor-like kinase 5 (Alk5) inhibitor, C8 and GSK3008348 failed to inhibit TGF-β1 induced SMAD3 and SMAD2 phosphorylation, but inhibited TGF-β-induced phosphorylation of ERK1/2 and STAT3, suggesting that αVβ1 integrin is involved in non-canonical TGF-β signaling pathways. Consistently, ITGB1 siRNA significantly decreased phosphorylation of ERK1/2. Furthermore, a selective inhibitor of MEK1/2 blocked TGF-β1 induced phosphorylation of ERK1/2 and decreased TGF-β1 induced procollagen I production, while a specific inhibitor of STAT3 had no effect on TGF-β1 induced procollagen I production.  Taken together, current data indicate that αVβ1 integrin can regulate TGF-β signaling independent of its reported role in activating latent TGF-β.  Our data further support that αVβ1 inhibition is a promising therapeutic target for the treatment of liver fibrosis.


2021 ◽  
Vol 5 (6) ◽  
pp. 1605-1616
Author(s):  
Jiajing Qiu ◽  
Jana Gjini ◽  
Tasleem Arif ◽  
Kateri Moore ◽  
Miao Lin ◽  
...  

Abstract Hematopoietic cell transplantation is a critical curative approach for many blood disorders. However, obtaining grafts with sufficient numbers of hematopoietic stem cells (HSCs) that maintain long-term engraftment remains challenging; this is due partly to metabolic modulations that restrict the potency of HSCs outside of their native environment. To address this, we focused on mitochondria. We found that human HSCs are heterogeneous in their mitochondrial activity as measured by mitochondrial membrane potential (MMP) even within the highly purified CD34+CD38−CD45RA−CD90+CD49f+ HSC population. We further found that the most potent HSCs exhibit the lowest mitochondrial activity in the population. We showed that the frequency of long-term culture initiating cells in MMP-low is significantly greater than in MMP-high CD34+CD38−CD45RA−CD90+ (CD90+) HSCs. Notably, these 2 populations were distinct in their long-term repopulating capacity when transplanted into immunodeficient mice. The level of chimerism 7 months posttransplantation was &gt;50-fold higher in the blood of MMP-low relative to MMP-high CD90+ HSC recipients. Although more than 90% of both HSC subsets were in G0, MMP-low CD90+ HSCs exhibited delayed cell-cycle priming profile relative to MMP-high HSCs. These functional differences were associated with distinct mitochondrial morphology; MMP-low in contrast to MMP-high HSCs contained fragmented mitochondria. Our findings suggest that the lowest MMP level selects for the most potent, likely dormant, stem cells within the highly purified HSC population. These results identify a new approach for isolating highly potent human HSCs for further clinical applications. They also implicate mitochondria in the intrinsic regulation of human HSC quiescence and potency.


Sign in / Sign up

Export Citation Format

Share Document