signal to noise ratio
Recently Published Documents


TOTAL DOCUMENTS

11376
(FIVE YEARS 4401)

H-INDEX

101
(FIVE YEARS 18)

Author(s):  
Yazan Alkhlefat ◽  
Sevia Mahdaliza Idrus Sutan Nameh ◽  
Farabi M. Iqbal

Current and future wireless communication systems are designed to achieve the user’s demands such as high data rate and high speed with low latency and simultaneously to save bandwidth and spectrum. In 5G and 6G networks, a high speed of transmitting and switching is required for internet of things (IoT) applications with higher capacity. To achieve these requirements a semiconductor optical amplifier (SOA) is considered as a wavelength converter to transmit a signal with an orthogonal frequency division multiplexing with subcarrier power modulation (OFDM-SPM). It exploits the subcarrier’s power in conventional OFDM block in order to send additional bits beside the normally transmitted bits. In this paper, we optimized the SOA’s parameters to have efficient wavelength conversion process. These parameters are included the injection current (IC) of SOA, power of pump and probe signals. A 7 Gbps OFDM-SPM signal with a millimeter waves (MMW) carrier of 80 GHz is considered for signal switching. The simulation results investigated and analyzed the performance of the designed system in terms of error vector magnitude (EVM), bit error rate (BER) and optical signal-to-noise ratio (OSNR). The optimum value of IC is 0.6 A while probe power is 9.45 and 8.9 dBm for pump power. The simulation is executed by virtual photonic integrated (VPI) software.


Author(s):  
Chapkit Charnsamorn ◽  
Suphongsa Khetkeeree

The existed interpolation method, based on the second-order tetration polynomial, has the asymmetric property. The interpolation results, for each considering region, give individual characteristics. Although the interpolation performance has been better than the conventional methods, the symmetric property for signal interpolation is also necessary. In this paper, we propose the symmetric interpolation formulas derived from the second-order tetration polynomial. The combination of the forward and backward operations was employed to construct two types of the symmetric interpolation. Several resolutions of the fundamental signals were used to evaluate the signal reconstruction performance. The results show that the proposed interpolations can be used to reconstruct the fundamental signal and its peak signal to noise ratio (PSNR) is superior to the conventional interpolation methods, except the cubic spline interpolation for the sine wave signal. However, the visual results show that it has a small difference. Moreover, our proposed interpolations converge to the steady-state faster than the cubic spline interpolation. In addition, the option number increasing will reinforce their sensitivity.


Author(s):  
Islam T. Almalkawi ◽  
Ashraf H. Al-Bqerat ◽  
Awni Itradat ◽  
Jamal N. Al-Karaki

<p>Amplifiers are widely used in signal receiving circuits, such as antennas, medical imaging, wireless devices and many other applications. However, one of the most challenging problems when building an amplifier circuit is the noise, since it affects the quality of the intended received signal in most wireless applications. Therefore, a preamplifier is usually placed close to the main sensor to reduce the effects of interferences and to amplify the received signal without degrading the signal-to-noise ratio. Although different designs have been optimized and tested in the literature, all of them are using larger than 100 nm technologies which have led to a modest performance in terms of equivalent noise charge (ENC), gain, power consumption, and response time. In contrast, we consider in this paper a new amplifier design technology trend and move towards sub 100 nm to enhance its performance. In this work, we use a pre-well-known design of a preamplifier circuit and rebuild it using 45 nm CMOS technology, which is made for the first time in such circuits. Performance evaluation shows that our proposed scaling technology, compared with other scaling technology, extremely reduces ENC of the circuit by more than 95%. The noise spectral density and time resolution are also reduced by 25% and 95% respectively. In addition, power consumption is decreased due to the reduced channel length by 90%. As a result, all of those enhancements make our proposed circuit more suitable for medical and wireless devices.</p>


Author(s):  
Hussein Abdulameer Abdulkadhim ◽  
Jinan Nsaif Shehab

Although variety in hiding methods used to protect data and information transmitted via channels but still need more robustness and difficulty to improve protection level of the secret messages from hacking or attacking. Moreover, hiding several medias in one media to reduce the transmission time and band of channel is the important task and define as a gain channel. This calls to find other ways to be more complexity in detecting the secret message. Therefore, this paper proposes cryptography/steganography method to hide an audio/voice message (secret message) in two different cover medias: audio and video. This method is use least significant bits (LSB) algorithm combined with 4D grid multi-wing hyper-chaotic (GMWH) system. Shuffling of an audio using key generated by GMWH system and then hiding message using LSB algorithm will provide more difficulty of extracting the original audio by hackers or attackers. According to analyses of obtained results in the receiver using peak signal-to-noise ratio (PSNR)/mean square error (MSE) and sensitivity of encryption key, the proposed method has more security level and robustness. Finally, this work will provide extra security to the mixture base of crypto-steganographic methods.


Author(s):  
Iyad Khalil Tumar ◽  
Adnan Mohammad Arar ◽  
Ayman Abd El Saleh

<p>Spectrum sensing in cognitive radio (CR) is a critical process as it directly influences the accuracy of detection. Noise uncertainty affects the reliability of detecting vacant holes in the spectrum, thus limiting the access of that spectrum by secondary users (SUs). In such uncertain environment; SUs sense the received power of a primary user (PU) independently with different measures of signal-to-noise ratio (SNR). Long sensing time serves in mitigating the effect of noise uncertainty, but on the cost of throughput performance of CR system. In this paper, the scheme of an asynchronous and crossed sensing-reporting is presented. The scheme reduces energy consumption during sensing process without affecting the detection accuracy. Exploiting the included idle time (𝑇𝑖) in sensing time slot; each SU collects power samples with higher SNR directly performs the reporting process to a fusion center (FC) consecutively. The FC terminates the sensing and reporting processes at a specific sensing time that corresponds to the lowest SNR (𝑆𝑁𝑅𝑤𝑎𝑙𝑙). Furthermore, this integrated scheme aims at optimizing the total frame duration (𝑇𝑓). Mathematical expressions of the scheme are obtained. Analytical results show the efficiency of the scheme in terms of energy saving and throughput increment under noise uncerainty.</p>


Author(s):  
Najlae Falah Hameed Al Saffar ◽  
Inaam R. Al-Saiq ◽  
Rewayda Razaq Mohsin Abo Alsabeh

Asymmetric image encryption schemes have shown high resistance against modern cryptanalysis. Massey Omura scheme is one of the popular asymmetric key cryptosystems based on the hard mathematical problem which is discrete logarithm problem. This system is more secure and efficient since there is no exchange of keys during the protocols of encryption and decryption. Thus, this work tried to use this fact to propose a secure asymmetric image encryption scheme. In this scheme the sender and receiver agree on public parameters, then the scheme begin deal with image using Massey Omura scheme to encrypt it by the sender and then decrypted it by the receiver. The proposed scheme tested using peak signal to noise ratio, and unified average changing intensity to prove that it is fast and has high security.


Author(s):  
Noor Alhuda F. Abbas ◽  
Nida Abdulredha ◽  
Raed Khalid Ibrahim ◽  
Adnan Hussein Ali

Information security is one of the main aspects of processes and methodologies in the technical age of information and communication. The security of information should be a key priority in the secret exchange of information between two parties. In order to ensure the security of information, there are some strategies that are used, and they include steganography and cryptography. An effective digital image-steganographic method based on odd/even pixel allocation and random function to increase the security and imperceptibility has been improved. This lately developed outline has been verified for increasing the security and imperceptibility to determine the existent problems. Huffman coding has been used to modify secret data prior embedding stage; this modified equivalent secret data that prevent the secret data from attackers to increase the secret data capacities. The main objective of our scheme is to boost the peak-signal-to-noise-ratio (PSNR) of the stego cover and stop against any attack. The size of the secret data also increases. The results confirm good PSNR values in addition of these findings confirmed the proposed method eligibility.


Author(s):  
Prakruthi Mandya Krishnegowda ◽  
Komarasamy Ganesan

<p>Diabetic retinopathy (DR) refers to a complication of diabetes and a prime cause of vision loss in middle-aged people. A timely screening and diagnosis process can reduce the risk of blindness. Fundus imaging is mainly preferred in the clinical analysis of DR. However; the raw fundus images are usually subjected to artifacts, noise, low and varied contrast, which is very hard to process by human visual systems and automated systems. In the existing literature, many solutions are given to enhance the fundus image. However, such approaches are particular and limited to a specific objective that cannot address multiple fundus images. This paper has presented an on-demand preprocessing frame work that integrates different techniques to address geometrical issues, random noises, and comprehensive contrast enhancement solutions. The performance of each preprocessing process is evaluated against peak signal-to-noise ratio (PSNR), and brightness is quantified in the enhanced image. The motive of this paper is to offer a flexible approach of preprocessing mechanism that can meet image enhancement needs based on different preprocessing requirements to improve the quality of fundus imaging towards early-stage diabetic retinopathy identification.</p>


2022 ◽  
Vol 18 (1) ◽  
pp. 1-17
Author(s):  
Josef Danial ◽  
Debayan Das ◽  
Anupam Golder ◽  
Santosh Ghosh ◽  
Arijit Raychowdhury ◽  
...  

This work presents a Cross-device Deep-Learning based Electromagnetic (EM-X-DL) side-channel analysis (SCA) on AES-128, in the presence of a significantly lower signal-to-noise ratio (SNR) compared to previous works. Using a novel algorithm to intelligently select multiple training devices and proper choice of hyperparameters, the proposed 256-class deep neural network (DNN) can be trained efficiently utilizing pre-processing techniques like PCA, LDA, and FFT on measurements from the target encryption engine running on an 8-bit Atmel microcontroller. In this way, EM-X-DL achieves >90% single-trace attack accuracy. Finally, an efficient end-to-end SCA leakage detection and attack framework using EM-X-DL demonstrates high confidence of an attacker with <20 averaged EM traces.


2022 ◽  
Vol 6 ◽  
Author(s):  
Phil J. Howson ◽  
Philip J. Monahan

Czech has a sibilant inventory that contrasts at three places of articulation: Alveolar, a pre-post-alveolar, and palato-alveolar. The specific aim of this study is to examine the perception of the typologically rare Czech sibilant inventory and to determine whether acoustic-perceptual characteristics play a role in the maintenance of the Czech trill-fricative. These results are compared to a more common three-way sibilant inventory, Polish. Native Czech listeners performed an auditory AX discrimination task in two blocks: A Czech block and a Polish block. Stimuli were embedded in varying levels of noise to increase task difficulty. Signal-to-noise ratio differences affected the perception of the Czech sibilants more than Polish sibilants. Moreover, a multidimensional scaling analysis revealed less perceptual dispersion for the Czech inventory than the Polish inventory. These results suggest that there is greater difficulty maintaining the Czech inventory considering the signal-to-noise comparisons and that this a factor that contributes to its rarity; however, similarities in perceptual dispersion indicate that maintenance across several acoustic-perceptual cues is possible, and Czech shows few signs of losing this typologically rare contrast.


Sign in / Sign up

Export Citation Format

Share Document