minimum cost network flow
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Hassan Tavakol-Davani ◽  
Michael Violante ◽  
Saeed Manshadi

Abstract In different areas across the U.S., there are utility poles and other critical infrastructure that are vulnerable to flooding damage. The goal of this multidisciplinary research is to assess and minimize the probability of utility pole failure through conventional hydrological, hydrostatic, and geotechnical calculations embedded to a unique mixed-integer linear programming (MILP) optimization framework. Once the flow rates that cause utility pole overturn are determined, the most cost-efficient subterranean pipe network configuration can be created that will allow for flood waters to be redirected from vulnerable infrastructure elements. The optimization framework was simulated using the Julia scientific programming language, for which the JuMP interface and Gurobi solver package were employed to solve a minimum cost network flow objective function given the numerous decision variables and constraints across the network. We implemented our optimization framework in three different watersheds across the U.S. These watersheds are located near Whittier, NC; Leadville, CO; and London, AR. The implementation of a minimum cost network flow optimization model within these watersheds produced results demonstrating that the necessary amount of flood waters could be conveyed away from utility poles to prevent failure by flooding.


2022 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
I-Lin Wang ◽  
Chen-Tai Hou

<p style='text-indent:20px;'>Public bike sharing systems have become the most popular shared economy application in transportation. The convenience of this system depends on the availability of bikes and empty racks. One of the major challenges in operating a bike sharing system is the repositioning of bikes between rental sites to maintain sufficient bike inventory in each station at all times. Most systems hire trucks to conduct dynamic repositioning of bikes among rental sites. We have analyzed a commonly used repositioning scheme and have demonstrated its ineffectiveness. To realize a higher quality of service, we proposed a crowdsourced dynamic repositioning strategy: first, we analyzed the historical rental data via the random forest algorithm and identified important factors for demand forecasting. Second, considering 30-minute periods, we calculated the optimal bike inventory via integer programming for each rental site in each time period with a sufficient crowd for repositioning bikes. Then, we proposed a minimum cost network flow model in a time-space network for calculating the optimal voluntary rider flows for each period based on the current bike inventory, which is adjusted according to the forecasted demands. The results of computational experiments on real-world data demonstrate that our crowdsourced repositioning strategy may reduce unmet rental demands by more than 30% during rush hours compared to conventional trucks.</p>


Author(s):  
Mehdi Iranpoor

Puzzles and games enhance the quality of teaching by creating an enjoyable, interactive, and playful atmosphere. The knight exchange is a famous, very old, and amusing game on the chessboard. This puzzle was used by the author to teach modeling in a mathematical programming course designed for graduate students. The aim was to teach the students the efficiency of the models. Accordingly, first, a binary programming formulation was developed. This formulation was, however, found to be inefficient, and tremendous time (i.e., more than four hours) and a large amount of processing memory were needed to solve the puzzle. The puzzle was subsequently formulated as a minimum cost network flow problem. The latter formulation outperformed the general binary formulation by solving the puzzle in less than a minute. The network formulation could also save the required processing memory. The results could help students to learn the value of modeling combinatorial optimization problems as network flows.


2013 ◽  
Vol 23 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Angelo Sifaleras

We present a wide range of problems concerning minimum cost network flows, and give an overview of the classic linear single-commodity Minimum Cost Network Flow Problem (MCNFP) and some other closely related problems, either tractable or intractable. We also discuss state-of-the-art algorithmic approaches and recent advances in the solution methods for the MCNFP. Finally, optimization software packages for the MCNFP are presented.


Sign in / Sign up

Export Citation Format

Share Document